Hirsch CD, Jiang J: Centromeres: sequences, structure, and biology plant genome diversity. Plant Genome Diversity. Edited by: Wendel JF, Greilhuber J, Dolezel J, Leitch IJ. 2012, Springer, Vienna, 59-70. 10.1007/978-3-7091-1130-7_4.
Chapter
Google Scholar
Henikoff S, Ahmad K, Malik HS: The centromere paradox: stable inheritance with rapidly evolving DNA. Science. 2001, 293 (5532): 1098-1102. 10.1126/science.1062939.
Article
CAS
PubMed
Google Scholar
Willard HF, Waye JS: Chromosome-specific subsets of human alpha satellite DNA: Analysis of sequence divergence within and between chromosomal subsets and evidence for an ancestral pentameric repeat. J Mol Evol. 1987, 25 (3): 207-214. 10.1007/BF02100014.
Article
CAS
PubMed
Google Scholar
Jiang J, Birchler JA, Parrott WA, Kelly Dawe R: A molecular view of plant centromeres. Trends Plant Sci. 2003, 8 (12): 570-575. 10.1016/j.tplants.2003.10.011.
Article
CAS
PubMed
Google Scholar
Melters DP, Bradnam KR, Young HA, Telis N, May MR, Ruby JG, Sebra R, Peluso P, Eid J, Rank D: Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biol. 2013, 14 (1): R10-10.1186/gb-2013-14-1-r10.
Article
PubMed Central
PubMed
Google Scholar
Meraldi P, McAinsh AD, Rheinbay E, Sorger PK: Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins. Genome Biol. 2006, 7 (3): R23-10.1186/gb-2006-7-3-r23.
Article
PubMed Central
PubMed
Google Scholar
Cleveland DW, Mao Y, Sullivan KF: Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell. 2003, 112 (4): 407-421. 10.1016/S0092-8674(03)00115-6.
Article
CAS
PubMed
Google Scholar
Malik HS, Vermaak D, Henikoff S: Recurrent evolution of DNA-binding motifs in the Drosophila centromeric histone. Proc Natl Acad Sci U S A. 2002, 99 (3): 1449-1454. 10.1073/pnas.032664299.
Article
PubMed Central
CAS
PubMed
Google Scholar
Talbert PB, Masuelli R, Tyagi AP, Comai L, Henikoff S: Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell. 2002, 14 (5): 1053-1066. 10.1105/tpc.010425.
Article
PubMed Central
CAS
PubMed
Google Scholar
Malik HS, Henikoff S: Adaptive evolution of CID, a centromere-specific histone in Drosophila . Genetics. 2001, 157 (3): 1293-1298.
PubMed Central
CAS
PubMed
Google Scholar
Allshire RC, Karpen GH: Epigenetic regulation of centromeric chromatin: old dogs, new tricks?. Nat Rev Genet. 2008, 9 (12): 923-937. 10.1038/nrg2466.
Article
PubMed Central
CAS
PubMed
Google Scholar
Song C, Liu S, Xiao J, He W, Zhou Y, Qin Q, Zhang C, Liu Y: Polyploid organisms. Sci China Life Sci. 2012, 55 (4): 301-311. 10.1007/s11427-012-4310-2.
Article
PubMed
Google Scholar
Heslop-Harrison JS: Genome evolution: extinction, continuation or explosion?. Curr Opin Plant Biol. 2012, 15 (2): 115-121. 10.1016/j.pbi.2012.03.006.
Article
CAS
PubMed
Google Scholar
Van de Peer Y, Maere S, Meyer A: The evolutionary significance of ancient genome duplications. Nat Rev Genet. 2009, 10 (10): 725-732. 10.1038/nrg2600.
Article
CAS
PubMed
Google Scholar
Wendel JF: Genome evolution in polyploids. Plant Mol Biol. 2000, 42 (1): 225-249. 10.1023/A:1006392424384.
Article
CAS
PubMed
Google Scholar
Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, de Pamphilis CW, Wall PK, Soltis PS: Polyploidy and angiosperm diversification. Am J Bot. 2009, 96 (1): 336-348. 10.3732/ajb.0800079.
Article
PubMed
Google Scholar
Adams KL, Wendel JF: Polyploidy and genome evolution in plants. Curr Opin Plant Biol. 2005, 8 (2): 135-141. 10.1016/j.pbi.2005.01.001.
Article
CAS
PubMed
Google Scholar
Adams KL, Cronn R, Percifield R, Wendel JF: Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Natl Acad Sci U S A. 2003, 100 (8): 4649-4654. 10.1073/pnas.0630618100.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wendel JF, Flagel LE, Adams KL: Jeans, genes, and genomes: cotton as a model for studying polyploidy. Polyploidy and Genome Evolution. Edited by: Soltis PS, Soltis DE. 2012, Springer, New York, 181-207. 10.1007/978-3-642-31442-1_10.
Chapter
Google Scholar
Wendel JF, Doyle JJ: Polyploidy and evolution in plants. Curr Opin Plant Biol. 2005, 8: 135-141. 10.1016/j.pbi.2005.01.001.
Article
PubMed
Google Scholar
Soltis DE, Soltis PS: Polyploidy: recurrent formation and genome evolution. Trends Eco Evol. 1999, 14 (9): 348-352. 10.1016/S0169-5347(99)01638-9.
Article
Google Scholar
Chen ZJ, Ni Z: Mechanisms of genomic rearrangements and gene expression changes in plant polyploids. Bioessays. 2006, 28 (3): 240-252. 10.1002/bies.20374.
Article
PubMed
Google Scholar
Chen ZJ: Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol. 2007, 58: 377-406. 10.1146/annurev.arplant.58.032806.103835.
Article
PubMed Central
CAS
PubMed
Google Scholar
Adams KL, Wendel JF: Novel patterns of gene expression in polyploid plants. Trends Genet. 2005, 21 (10): 539-543. 10.1016/j.tig.2005.07.009.
Article
CAS
PubMed
Google Scholar
Scannell DR, Byrne KP, Gordon JL, Wong S, Wolfe KH: Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts. Nature. 2006, 440 (7082): 341-345. 10.1038/nature04562.
Article
CAS
PubMed
Google Scholar
Town CD, Cheung F, Maiti R, Crabtree J, Haas BJ, Wortman JR, Hine EE, Althoff R, Arbogast TS, Tallon LJ: Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell Online. 2006, 18 (6): 1348-1359. 10.1105/tpc.106.041665.
Article
CAS
Google Scholar
Ku H-M, Vision T, Liu J, Tanksley SD: Comparing sequenced segments of the tomato and Arabidopsis genomes: large-scale duplication followed by selective gene loss creates a network of synteny. Proc Natl Acad Sci U S A. 2000, 97 (16): 9121-9126. 10.1073/pnas.160271297.
Article
PubMed Central
CAS
PubMed
Google Scholar
Doyle JJ, Flagel LE, Paterson AH, Rapp RA, Soltis DE, Soltis PS, Wendel JF: Evolutionary genetics of genome merger and doubling in plants. Ann Rev Genet. 2008, 42 (1): 443-461. 10.1146/annurev.genet.42.110807.091524.
Article
CAS
PubMed
Google Scholar
Barker MS, Kane NC, Matvienko M, Kozik A, Michelmore RW, Knapp SJ, Rieseberg LH: Multiple paleopolyploidizations during the evolution of the Compositae reveal parallel patterns of duplicate gene retention after millions of years. Mol Biol Evol. 2008, 25 (11): 2445-2455. 10.1093/molbev/msn187.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hirsch CD, Wu Y, Yan H, Jiang J: Lineage-specific adaptive evolution of the centromeric protein CenH3 in diploid and allotetraploid Oryza species. Mol Biol Evol. 2009, 26 (12): 2877-2885. 10.1093/molbev/msp208.
Article
CAS
PubMed
Google Scholar
Lermontova I, Schubert I: CenH3 for establishing and maintaining centromeres. In: Plant Centromere Biology. Oxford, UK: Wiley-Blackwell; 2013: 67–82.
Chapter
Google Scholar
Wang G, He Q, Liu F, Cheng Z, Talbert P, Jin W: Characterization of CenH3 proteins and centromere-associated DNA sequences in diploid and allotetraploid Brassica species. Chromosoma. 2011, 120 (4): 353-365. 10.1007/s00412-011-0315-z.
Article
CAS
PubMed
Google Scholar
U. N: Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Japan J Bot. 1935, 7: 389-452.
Google Scholar
Ge S, Sang T, Lu B-R, Hong D-Y: Phylogeny of rice genomes with emphasis on origins of allotetraploid species. Proc Natl Acad Sci U S A. 1999, 96 (25): 14400-14405. 10.1073/pnas.96.25.14400.
Article
PubMed Central
CAS
PubMed
Google Scholar
Grover C, Grupp K, Wanzek R, Wendel J: Assessing the monophyly of polyploid Gossypium species. Plant Syst Evol. 2012, 298 (6): 1177-1183. 10.1007/s00606-012-0615-7.
Article
Google Scholar
Luo S, Mach J, Abramson B, Ramirez R, Schurr R, Barone P, Copenhaver G, Folkerts O: The cotton centromere contains a Ty3-gypsy-like LTR retroelement. PLoS One. 2012, 7 (4): e35261-10.1371/journal.pone.0035261.
Article
PubMed Central
CAS
PubMed
Google Scholar
Smith SA, Donoghue MJ: Rates of molecular evolution are linked to life history in flowering plants. Science. 2008, 322 (5898): 86-89. 10.1126/science.1163197.
Article
CAS
PubMed
Google Scholar
Librado P, Rozas J: DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009, 25 (11): 1451-1452. 10.1093/bioinformatics/btp187.
Article
CAS
PubMed
Google Scholar
Murrell B, Wertheim JO, Moola S, Weighill T, Scheffler K, Pond SLK: Detecting individual sites subject to episodic diversifying selection. PLoS Genet. 2012, 8 (7): e1002764-10.1371/journal.pgen.1002764.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hui L, Lu L, Heng Y, Qin R, Xing Y, Jin W: Expression of CENH3 alleles in synthesized allopolyploid Oryza species. J Genet Genomics. 2010, 37 (10): 703-711. 10.1016/S1673-8527(09)60088-6.
Article
Google Scholar
Salmon A, Flagel L, Ying B, Udall JA, Wendel JF: Homoeologous nonreciprocal recombination in polyploid cotton. New Phytol. 2010, 186 (1): 123-134. 10.1111/j.1469-8137.2009.03093.x.
Article
CAS
PubMed
Google Scholar
Flagel L, Wendel J, Udall J: Duplicate gene evolution, homoeologous recombination, and transcriptome characterization in allopolyploid cotton. BMC Genomics. 2012, 13 (1): 302-10.1186/1471-2164-13-302.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang T, Talbert PB, Zhang W, Wu Y, Yang Z, Henikoff JG, Henikoff S, Jiang J: The CentO satellite confers translational and rotational phasing on CenH3 nucleosomes in rice centromeres. Proc Natl Acad Sci U S A. 2013, 110 (50): E4875-E4883. 10.1073/pnas.1319548110.
Article
PubMed Central
CAS
PubMed
Google Scholar
Takeuchi K, Nishino T, Mayanagi K, Horikoshi N, Osakabe A, Tachiwana H, Hori T, Kurumizaka H, Fukagawa T: The centromeric nucleosome-like CENP–T–W–S–X complex induces positive supercoils into DNA. Nucleic Acids Res. 2014, 42 (3): 1644-1655. 10.1093/nar/gkt1124.
Article
PubMed Central
CAS
PubMed
Google Scholar
Carroll CW, Milks KJ, Straight AF: Dual recognition of CENP-A nucleosomes is required for centromere assembly. J Cell Biol. 2010, 189 (7): 1143-1155. 10.1083/jcb.201001013.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vermaak D, Hayden HS, Henikoff S: Centromere targeting element within the histone fold domain of Cid. Mol Cell Biol. 2002, 22 (21): 7553-7561. 10.1128/MCB.22.21.7553-7561.2002.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cooper JL, Henikoff S: Adaptive evolution of the histone fold domain in centromeric histones. Mol Biol Evol. 2004, 21 (9): 1712-1718. 10.1093/molbev/msh179.
Article
CAS
PubMed
Google Scholar
Shelby RD, Vafa O, Sullivan KF: Assembly of CENP-A into centromeric chromatin requires a cooperative array of nucleosomal DNA contact sites. J Cell Biol. 1997, 136 (3): 501-513. 10.1083/jcb.136.3.501.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lermontova I, Schubert V, Fuchs J, Klatte S, Macas J, Schubert I: Loading of Arabidopsis centromeric histone CENH3 occurs mainly during G2 and requires the presence of the histone fold domain. Plant Cell. 2006, 18 (10): 2443-2451. 10.1105/tpc.106.043174.
Article
PubMed Central
CAS
PubMed
Google Scholar
Black BE, Foltz DR, Chakravarthy S, Luger K, Woods VL, Cleveland DW: Structural determinants for generating centromeric chromatin. Nature. 2004, 430 (6999): 578-582. 10.1038/nature02766.
Article
CAS
PubMed
Google Scholar
Lermontova I, Koroleva O, Rutten T, Fuchs J, Schubert V, Moraes I, Koszegi D, Schubert I: Knockdown of CenH3 in Arabidopsis reduces mitotic divisions and causes sterility by disturbed meiotic chromosome segregation. Plant J. 2011, 68 (1): 40-50. 10.1111/j.1365-313X.2011.04664.x.
Article
CAS
PubMed
Google Scholar
Ravi M, Shibata F, Ramahi JS, Nagaki K, Chen C, Murata M, Chan SW: Meiosis-specific loading of the centromere-specific histone CENH3 in Arabidopsis thaliana . PLoS Genet. 2011, 7 (6): e1002121-10.1371/journal.pgen.1002121.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chen Y, Baker RE, Keith KC, Harris K, Stoler S, Fitzgerald-Hayes M: The N terminus of the centromere H3-like protein Cse4p performs an essential function distinct from that of the histone fold domain. Mol Cell Biol. 2000, 20 (18): 7037-7048. 10.1128/MCB.20.18.7037-7048.2000.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bailey AO, Panchenko T, Sathyan KM, Petkowski JJ, Pai P-J, Bai DL, Russell DH, Macara IG, Shabanowitz J, Hunt DF, Black BE, Foltz DR: Posttranslational modification of CENP-A influences the conformation of centromeric chromatin. Proc Natl Acad Sci U S A 2013, 110(29):11827–11832.
Article
PubMed Central
CAS
PubMed
Google Scholar
Seelanan T, Schnabel A, Wendel JF: Congruence and consensus in the cotton tribe. Sys Bot. 1997, 22: 259-290. 10.2307/2419457.
Article
Google Scholar
Wang K, Wang Z, Li F, Ye W, Wang J, Song G, Yue Z, Cong L, Shang H, Zhu S: The draft genome of a diploid cotton Gossypium raimondii . Nat Genet. 2012, 44 (10): 1098-1103. 10.1038/ng.2371.
Article
CAS
PubMed
Google Scholar
Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N: Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 2012, 40 (D1): D1178-D1186. 10.1093/nar/gkr944.
Article
PubMed Central
CAS
PubMed
Google Scholar
Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL: GenBank. Nucleic Acids Res. 2008, 36 (suppl 1): D25-D30.
PubMed Central
CAS
PubMed
Google Scholar
Delport W, Poon AF, Frost SD, Pond SLK: Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics. 2010, 26 (19): 2455-2457. 10.1093/bioinformatics/btq429.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lysak MA, Koch MA, Pecinka A, Schubert I: Chromosome triplication found across the tribe Brassiceae. Genome Res. 2005, 15 (4): 516-525. 10.1101/gr.3531105.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cronn RC, Small RL, Haselkorn T, Wendel JF: Rapid diversification of the cotton genus (Gossypium: Malvaceae) revealed by analysis of sixteen nuclear and chloroplast genes. Am J Botany. 2002, 89 (4): 707-725. 10.3732/ajb.89.4.707.
Article
CAS
Google Scholar
Sanderson M: A nonparametric approach to estimating divergence times in the absence of rate constancy. Mol Biol Evol. 1997, 14 (12): 1218-10.1093/oxfordjournals.molbev.a025731.
Article
CAS
Google Scholar
Jacquemin J, Ammiraju JSS, Haberer G, Billheimer DD, Yu Y, Liu LC, Rivera LF, Mayer K, Chen M, Wing RA: Fifteen million years of evolution in the Oryza genus shows extensive gene family expansion. Mol Plant 2013, 7(4):642–656.
Article
PubMed
Google Scholar
Senchina DS, Alvarez I, Cronn RC, Liu B, Rong J, Noyes RD, Paterson AH, Wing RA, Wilkins TA, Wendel JF: Rate variation among nuclear genes and the age of polyploidy in Gossypium . Mol Biol Evol. 2003, 20 (4): 633-643. 10.1093/molbev/msg065.
Article
CAS
PubMed
Google Scholar
Lyons E, Freeling M: How to usefully compare homologous plant genes and chromosomes as DNA sequences. Plant J. 2008, 53 (4): 661-673. 10.1111/j.1365-313X.2007.03326.x.
Article
CAS
PubMed
Google Scholar
Lyons E, Pedersen B, Kane J, Alam M, Ming R, Tang H, Wang X, Bowers J, Paterson A, Lisch D: Finding and comparing syntenic regions among Arabidopsis and the outgroups papaya, poplar, and grape: CoGe with rosids. Plant Physiol. 2008, 148 (4): 1772-1781. 10.1104/pp.108.124867.
Article
PubMed Central
CAS
PubMed
Google Scholar
Carvalho MR, Herrera FA, Jaramillo CA, Wing SL, Callejas R: Paleocene Malvaceae from northern South America and their biogeographical implications. Am J Bot. 2011, 98 (8): 1337-1355. 10.3732/ajb.1000539.
Article
PubMed
Google Scholar
Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22 (22): 4673-4680. 10.1093/nar/22.22.4673.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series. 1999, 95-98.
Google Scholar
Darriba D, Taboada GL, Doallo R, Posada D: jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012, 9 (8): 772-10.1038/nmeth.2109.
Article
PubMed Central
CAS
PubMed
Google Scholar
Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003, 52 (5): 696-704. 10.1080/10635150390235520.
Article
PubMed
Google Scholar
Kumar S, Nei M, Dudley J, Tamura K: MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform. 2008, 9 (4): 299-306. 10.1093/bib/bbn017.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S: MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013, 30 (12): 2725-2729. 10.1093/molbev/mst197.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ma J, Wing RA, Bennetzen JL, Jackson SA: Plant centromere organization: a dynamic structure with conserved functions. Trends Genet. 2007, 23 (3): 134-139. 10.1016/j.tig.2007.01.004.
Article
CAS
PubMed
Google Scholar
Källberg M, Wang H, Wang S, Peng J, Wang Z, Lu H, Xu J: Template-based protein structure modeling using the RaptorX web server. Nat Protocols. 2012, 7 (8): 1511-1522. 10.1038/nprot.2012.085.
Article
PubMed
Google Scholar
Peng J, Xu J: A multiple-template approach to protein threading. Proteins. 2011, 79 (6): 1930-1939. 10.1002/prot.23016.
Article
PubMed Central
CAS
PubMed
Google Scholar
Peng J, Xu J: Raptorx: exploiting structure information for protein alignment by statistical inference. Proteins. 2011, 79 (S10): 161-171. 10.1002/prot.23175.
Article
PubMed Central
CAS
PubMed
Google Scholar
Adams KL, Percifield R, Wendel JF: Organ-specific silencing of duplicated genes in a newly synthesized cotton allotetraploidd. Genetics. 2004, 168 (4): 2217-2226. 10.1534/genetics.104.033522.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yoo MJ, Szadkowski E, Wendel JF: Homoeolog expression bias and expression level dominance in allopolyploid cotton. Heredity. 2013, 110 (2): 171-180. 10.1038/hdy.2012.94.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wu TD, Nacu S: Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics. 2010, 26 (7): 873-881. 10.1093/bioinformatics/btq057.
Article
PubMed Central
CAS
PubMed
Google Scholar
Page JT, Gingle AR, Udall JA: PolyCat: a resource for genome categorization of sequencing reads from allopolyploid organisms. G3. 2013, 3 (3): 517-525. 10.1534/g3.112.005298.
Article
PubMed Central
CAS
PubMed
Google Scholar