Knapp S: Tobacco to tomatoes: a phylogenetic perspective on fruit diversity in the Solanaceae. J Exp Bot. 2002, 53: 2001-2022. 10.1093/jxb/erf068.
Article
PubMed
Google Scholar
Paran I, Knaap van der E: Genetic and molecular regulation of fruit and plant domestication traits in tomato and pepper. J Exp Bot. 2007, 58: 3841-3852. 10.1093/jxb/erm257.
Article
PubMed
Google Scholar
Tanksley SD: The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. Plant Cell. 2004, 16 (Suppl): S181-189. 10.1105/tpc.018119.
Article
PubMed
PubMed Central
Google Scholar
Coen ES, Meyerowitz EM: The war of the whorls: genetic interactions controlling flower development. Nature. 1991, 353: 31-37. 10.1038/353031a0.
Article
PubMed
Google Scholar
Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF: The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol. 2004, 14: 1935-1940. 10.1016/j.cub.2004.10.028.
Article
PubMed
Google Scholar
Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF: B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature. 2000, 405: 200-203. 10.1038/35012103.
Article
PubMed
Google Scholar
Theissen G, Saedler H: Plant biology. Floral quartets. Nature. 2001, 409: 469-471. 10.1038/35054172.
Article
PubMed
Google Scholar
Balanza V, Navarrete M, Trigueros M, Ferrandiz C: Patterning the female side of Arabidopsis: the importance of hormones. J Exp Bot. 2006, 57: 3457-3469. 10.1093/jxb/erl188.
Article
PubMed
Google Scholar
Dinneny JR, Yanofsky MF: Drawing lines and borders: how the dehiscent fruit of Arabidopsis is patterned. Bioessays. 2005, 27 (1): 42-49. 10.1002/bies.20165.
Article
PubMed
Google Scholar
Dinneny JR, Weigel D, Yanofsky MF: A genetic framework for fruit patterning in Arabidopsis thaliana. Development. 2005, 132: 4687-4696. 10.1242/dev.02062.
Article
PubMed
Google Scholar
Fos M, Proano K, Nuez F, Garcia-Martinez JL: Role of gibberellins in parthenocarpic fruit development induced by the genetic system pat-3/pat-4 in tomato. Physiol Plant. 2001, 111: 545-550. 10.1034/j.1399-3054.2001.1110416.x.
Article
PubMed
Google Scholar
Gorguet B, van Heusden AW, Lindhout P: Parthenocarpic fruit development in tomato. Plant Biol (Stuttg). 2005, 7: 131-139. 10.1055/s-2005-837494.
Article
Google Scholar
Olimpieri I, Siligato F, Caccia R, Mariotti L, Ceccarelli N, Soressi GP, Mazzucato A: Tomato fruit set driven by pollination or by the parthenocarpic fruit allele are mediated by transcriptionally regulated gibberellin biosynthesis. Planta. 2007, 226: 877-888. 10.1007/s00425-007-0533-z.
Article
PubMed
Google Scholar
Serrani JC, Ruiz-Rivero O, Fos M, García-Martínez JL: Auxin-induced fruit-set in tomato is mediated in part by gibberellins. Plant J. 2008, 56: 922-934. 10.1111/j.1365-313X.2008.03654.x.
Article
PubMed
Google Scholar
Vivian-Smith A, Koltunow AM: Genetic analysis of growth-regulator-induced parthenocarpy in Arabidopsis. Plant Physiol. 1999, 121: 437-451. 10.1104/pp.121.2.437.
Article
PubMed
PubMed Central
Google Scholar
Buzgo M, Soltis DE, Soltis PS, Ma H: Towards a comprehensive integration of morphological and genetic studies of floral development. Trends Plant Sci. 2004, 9: 164-173. 10.1016/j.tplants.2004.02.003.
Article
PubMed
Google Scholar
Becker A, Gleissberg S, Smyth DR: Floral and vegetative morphogenesis in California Poppy (Eschscholzia californica Cham.). Int J Plant Sci. 2005, 166: 537-555. 10.1086/429866.
Article
Google Scholar
Buzgo M, Chanderbali AS, Kim S, Zheng Z, G Oppenheimer D, Soltis PS, Soltis DE: Floral developmental morphology of Persea americana (Avocado, Lauraceae): The oddities of male organ identity. Int J Plant Sci. 2007, 168: 261-284. 10.1086/510297.
Article
Google Scholar
Gillaspy G, Ben-David H, Gruissem W: Fruits: a developmental perspective. Plant Cell. 1993, 5: 1439-1451. 10.1105/tpc.5.10.1439.
Article
PubMed
PubMed Central
Google Scholar
Smyth DR, Bowman JL, Meyerowitz EM: Early flower development in Arabidopsis. Plant Cell. 1990, 2: 755-767. 10.1105/tpc.2.8.755.
Article
PubMed
PubMed Central
Google Scholar
Bertin N, Genard M, Fishman S: A model for an early stage of tomato fruit development: cell multiplication and cessation of the cell proliferative activity. Ann Bot (Lond). 2003, 92: 65-72. 10.1093/aob/mcg111.
Article
Google Scholar
Joubes J, Phan T-H, Just D, Rothan C, Bergounioux C, Raymond P, Chevalier C: Molecular and biochemical characterization of the involvement of cyclin-dependent kinase A during the early development of tomato fruit. Plant Physiol. 1999, 121: 857-869. 10.1104/pp.121.3.857.
Article
PubMed
PubMed Central
Google Scholar
Giovannoni JJ: Genetic regulation of fruit development and ripening. Plant Cell. 2004, 16 (Suppl): S170-180. 10.1105/tpc.019158.
Article
PubMed
PubMed Central
Google Scholar
Angenent GC, Franken J, Busscher M, Colombo L, van Tunen AJ: Petal and stamen formation in petunia is regulated by the homeotic gene fbp1. Plant J. 1993, 4: 101-112. 10.1046/j.1365-313X.1993.04010101.x.
Article
PubMed
Google Scholar
Colombo L, Franken J, Koetje E, van Went J, Dons HJ, Angenent GC, van Tunen AJ: The petunia MADS box gene FBP11 determines ovule identity. Plant Cell. 1995, 7: 1859-1868. 10.1105/tpc.7.11.1859.
Article
PubMed
PubMed Central
Google Scholar
de Martino G, Pan I, Emmanuel E, Levy A, Irish VF: Functional analyses of two tomato APETALA3 genes demonstrate diversification in their roles in regulating floral development. Plant Cell. 2006, 18: 1833-1845. 10.1105/tpc.106.042978.
Article
PubMed
PubMed Central
Google Scholar
Krol van der AR, Brunelle A, Tsuchimoto S, Chua NH: Functional analysis of petunia floral homeotic MADS box gene pMADS1. Genes Dev. 1993, 7: 1214-1228. 10.1101/gad.7.7a.1214.
Article
PubMed
Google Scholar
Vandenbussche M, Zethof J, Royaert S, Weterings K, Gerats T: The duplicated B-class heterodimer model: whorl-specific effects and complex genetic interactions in Petunia hybrida flower development. Plant Cell. 2004, 16: 741-754. 10.1105/tpc.019166.
Article
PubMed
PubMed Central
Google Scholar
Vandenbussche M, Zethof J, Souer E, Koes R, Tornielli GB, Pezzotti M, Ferrario S, Angenent GC, Gerats T: Toward the analysis of the petunia MADS box gene family by reverse and forward transposon insertion mutagenesis approaches: B, C, and D floral organ identity functions require SEPALLATA-like MADS box genes in petunia. Plant Cell. 2003, 15: 2680-2693. 10.1105/tpc.017376.
Article
PubMed
PubMed Central
Google Scholar
Grandillo S, Ku HM, Tanksley SD: Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theor Appl Genet. 1999, 99: 978-987. 10.1007/s001220051405.
Article
Google Scholar
Liu J, Van Eck J, Cong B, Tanksley SD: A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci USA. 2002, 99: 13302-13306. 10.1073/pnas.162485999.
Article
PubMed
PubMed Central
Google Scholar
Xiao H, Jiang N, Schaffner E, Stockinger EJ, Knaap van der E: A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science. 2008, 319: 1527-1530. 10.1126/science.1153040.
Article
PubMed
Google Scholar
Cong B, Barrero LS, Tanksley SD: Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nat Genet. 2008, 40: 800-804. 10.1038/ng.144.
Article
PubMed
Google Scholar
Frary A, Nesbitt TC, Frary A, Grandillo S, Knaap Evd, Cong B, Liu J, Meller J, Elber R, Alpert KB, et al: fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science. 2000, 289: 85-88. 10.1126/science.289.5476.85.
Article
PubMed
Google Scholar
Levy M, Wang Q, Kaspi R, Parrella MP, Abel S: Arabidopsis IQD1, a novel calmodulin-binding nuclear protein, stimulates glucosinolate accumulation and plant defense. Plant J. 2005, 43: 79-96. 10.1111/j.1365-313X.2005.02435.x.
Article
PubMed
Google Scholar
Welty N, Radovich C, Meulia T, Knaap van der E: Inflorescence development in two tomato species. Can J Bot. 2007, 85: 111-118. 10.1139/B06-154.
Article
Google Scholar
Deikman J, Kline R, Fischer RL: Organization of ripening and ethylene regulatory regions in a fruit-specific promoter from tomato (Lycopersicon esculentum). Plant Physiol. 1992, 100: 2013-2017. 10.1104/pp.100.4.2013.
Article
PubMed
PubMed Central
Google Scholar
Giovannoni J: Molecular biology of fruit maturation and ripening. Annu Rev Plant Physiol Plant Mol Biol. 2001, 52: 725-749. 10.1146/annurev.arplant.52.1.725.
Article
PubMed
Google Scholar
Klee HJ: Ethylene signal transduction. Moving beyond Arabidopsis. Plant Physiol. 2004, 135: 660-667. 10.1104/pp.104.040998.
Article
PubMed
PubMed Central
Google Scholar
Ge Y, Dudoit S, Speed T: Resampling-based multiple testing for microarray data analysis. Test. 2003, 12: 1-44. 10.1007/BF02595811.
Article
Google Scholar
Busi MV, Bustamante C, D'Angelo C, Hidalgo-Cuevas M, Boggio SB, Valle EM, Zabaleta E: MADS-box genes expressed during tomato seed and fruit development. Plant Mol Biol. 2003, 52: 801-815. 10.1023/A:1025001402838.
Article
PubMed
Google Scholar
Hileman LC, Sundstrom JF, Litt A, Chen M, Shumba T, Irish VF: Molecular and phylogenetic analyses of the MADS-Box gene family in tomato. Mol Biol Evol. 2006, 23: 2245-2258. 10.1093/molbev/msl095.
Article
PubMed
Google Scholar
Pnueli L, Hareven D, Rounsley SD, Yanofsky MF, Lifschitz E: Isolation of the tomato AGAMOUS gene TAG1 and analysis of its homeotic role in transgenic plants. Plant Cell. 1994, 6: 163-173. 10.1105/tpc.6.2.163.
Article
PubMed
PubMed Central
Google Scholar
Ampomah-Dwamena C, Morris BA, Sutherland P, Veit B, Yao JL: Down-regulation of TM29, a tomato SEPALLATA homolog, causes parthenocarpic fruit development and floral reversion. Plant Physiol. 2002, 130: 605-617. 10.1104/pp.005223.
Article
PubMed
PubMed Central
Google Scholar
Sablowski RW, Meyerowitz EM: A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell. 1998, 92: 93-103. 10.1016/S0092-8674(00)80902-2.
Article
PubMed
Google Scholar
Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J: A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science. 2002, 296: 343-346. 10.1126/science.1068181.
Article
PubMed
Google Scholar
Leseberg CH, Eissler CL, Wang X, Johns MA, Duvall MR, Mao L: Interaction study of MADS-domain proteins in tomato. J Exp Bot. 2008, 59: 2253-2265. 10.1093/jxb/ern094.
Article
PubMed
Google Scholar
Sessions A, Nemhauser JL, McColl A, Roe JL, Feldmann KA, Zambryski PC: ETTIN patterns the Arabidopsis floral meristem and reproductive organs. Development. 1997, 124: 4481-4491.
PubMed
Google Scholar
Liu Z, Franks RG, Klink VP: Regulation of gynoecium marginal tissue formation by LEUNIG and AINTEGUMENTA. Plant Cell. 2000, 12: 1879-1892. 10.1105/tpc.12.10.1879.
Article
PubMed
PubMed Central
Google Scholar
Roe JL, Nemhauser JL, Zambryski PC: TOUSLED participates in apical tissue formation during gynoecium development in Arabidopsis. Plant Cell. 1997, 9: 335-353. 10.1105/tpc.9.3.335.
Article
PubMed
PubMed Central
Google Scholar
Kuusk S, Sohlberg JJ, Long JA, Fridborg I, Sundberg E: STY1 and STY2 promote the formation of apical tissues during Arabidopsis gynoecium development. Development. 2002, 129: 4707-4717.
PubMed
Google Scholar
Alvarez J, Smyth DR: CRABS CLAW and SPATULA, two Arabidopsis genes that control carpel development in parallel with AGAMOUS. Development. 1999, 126: 2377-2386.
PubMed
Google Scholar
Crawford BCW, Ditta G, Yanofsky MF: The NTT gene is required for transmitting-tract development in carpels of Arabidopsis thaliana. Curr Biol. 2007, 17: 1101-1108. 10.1016/j.cub.2007.05.079.
Article
PubMed
Google Scholar
Gremski K, Ditta G, Yanofsky MF: The HECATE genes regulate female reproductive tract development in Arabidopsis thaliana. Development. 2007, 134: 3593-3601. 10.1242/dev.011510.
Article
PubMed
Google Scholar
Liljegren SJ, Ditta GS, Eshed Y, Savidge B, Bowman JL, Yanofsky MF: SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature. 2000, 404: 766-770. 10.1038/35008089.
Article
PubMed
Google Scholar
Rajani S, Sundaresan V: The Arabidopsis myc/bHLH gene ALCATRAZ enables cell separation in fruit dehiscence. Curr Biol. 2001, 11: 1914-1922. 10.1016/S0960-9822(01)00593-0.
Article
PubMed
Google Scholar
Liljegren SJ, Roeder AHK, Kempin SA, Gremski K, Østergaard L, Guimil S, Reyes DK, Yanofsky MF: Control of fruit patterning in Arabidopsis by INDEHISCENT. Cell. 2004, 116: 843-853. 10.1016/S0092-8674(04)00217-X.
Article
PubMed
Google Scholar
Roeder AHK, Ferrándiz C, Yanofsky MF: The role of the REPLUMLESS homeodomain protein in patterning the Arabidopsis fruit. Curr Biol. 2003, 13: 1630-1635. 10.1016/j.cub.2003.08.027.
Article
PubMed
Google Scholar
Ferrandiz C, Liljegren SJ, Yanofsky MF: Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science. 2000, 289: 436-438. 10.1126/science.289.5478.436.
Article
PubMed
Google Scholar
Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, Wisman E, Yanofsky MF: Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature. 2003, 424: 85-88. 10.1038/nature01741.
Article
PubMed
Google Scholar
Torii KU, Mitsukawa N, Oosumi T, Matsuura Y, Yokoyama R, Whittier RF, Komeda Y: The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. Plant Cell. 1996, 8: 735-746. 10.1105/tpc.8.4.735.
Article
PubMed
PubMed Central
Google Scholar
Bowman JL, Smyth DR: CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains. Development. 1999, 126: 2387-2396.
PubMed
Google Scholar
Kerstetter RA, Bollman K, Taylor RA, Bomblies K, Poethig RS: KANADI regulates organ polarity in Arabidopsis. Nature. 2001, 411: 706-709. 10.1038/35079629.
Article
PubMed
Google Scholar
Eshed Y, Baum SF, Bowman JL: Distinct mechanisms promote polarity establishment in carpels of Arabidopsis. Cell. 1999, 99: 199-209. 10.1016/S0092-8674(00)81651-7.
Article
PubMed
Google Scholar
McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK: Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature. 2001, 411: 709-713. 10.1038/35079635.
Article
PubMed
Google Scholar
Alves-Ferreira M, Wellmer F, Banhara A, Kumar V, Riechmann JL, Meyerowitz EM: Global expression profiling applied to the analysis of Arabidopsis stamen development. Plant Physiol. 2007, 145: 747-762. 10.1104/pp.107.104422.
Article
PubMed
PubMed Central
Google Scholar
Gomez-Mena C, de Folter S, Costa MM, Angenent GC, Sablowski R: Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. Development. 2005, 132: 429-438. 10.1242/dev.01600.
Article
PubMed
Google Scholar
Wellmer F, Riechmann JL, Alves-Ferreira M, Meyerowitz EM: Genome-wide analysis of spatial gene expression in Arabidopsis flowers. Plant Cell. 2004, 16: 1314-1326. 10.1105/tpc.021741.
Article
PubMed
PubMed Central
Google Scholar
Dharmasiri N, Dharmasiri S, Jones AM, Estelle M: Auxin action in a cell-free system. Curr Biol. 2003, 13: 1418-1422. 10.1016/S0960-9822(03)00536-0.
Article
PubMed
Google Scholar
Woodward AW, Bartel B: Auxin: regulation, action, and interaction. Ann Bot. 2005, 95: 707-735. 10.1093/aob/mci083.
Article
PubMed
PubMed Central
Google Scholar
Helliwell CA, Sullivan JA, Mould RM, Gray JC, Peacock WJ, Dennis ES: A plastid envelope location of Arabidopsis ent-kaurene oxidase links the plastid and endoplasmic reticulum steps of the gibberellin biosynthesis pathway. Plant J. 2001, 28: 201-208. 10.1046/j.1365-313X.2001.01150.x.
Article
PubMed
Google Scholar
Serrani JC, Sanjuan R, Ruiz-Rivero O, Fos M, Garcia-Martinez JL: Gibberellin regulation of fruit set and growth in tomato. Plant Physiol. 2007, 145: 246-257. 10.1104/pp.107.098335.
Article
PubMed
PubMed Central
Google Scholar
Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow TY, Hsing YI, Kitano H, Yamaguchi I, et al: GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature. 2005, 437: 693-698. 10.1038/nature04028.
Article
PubMed
Google Scholar
Umezawa T, Okamoto M, Kushiro T, Nambara E, Oono Y, Seki M, Kobayashi M, Koshiba T, Kamiya Y, Shinozaki K: CYP707A3, a major ABA 8'-hydroxylase involved in dehydration and rehydration response in Arabidopsis thaliana. Plant J. 2006, 46: 171-182. 10.1111/j.1365-313X.2006.02683.x.
Article
PubMed
Google Scholar
Foster R, Mattsson O, Mundy J: Plants flex their skeletons. Trends Plant Sci. 2003, 8: 202-204. 10.1016/S1360-1385(03)00061-X.
Article
PubMed
Google Scholar
Teale WD, Paponov IA, Palme K: Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol. 2006, 7: 847-859. 10.1038/nrm2020.
Article
PubMed
Google Scholar
Zahn LM, Kong H, Leebens-Mack JH, Kim S, Soltis PS, Landherr LL, Soltis DE, dePamphilis CW, Ma H: The evolution of the SEPALLATA subfamily of MADS-box genes: a preangiosperm origin with multiple duplications throughout angiosperm history. Genetics. 2005, 169: 2209-2223. 10.1534/genetics.104.037770.
Article
PubMed
PubMed Central
Google Scholar
Brukhin V, Hernould M, Gonzalez N, Chevalier C, Mouras A: Flower development schedule in tomato Lycopersicon esculentum cv. Sweet cherry. Sex Plant Reprod. 2003, 15: 311-320.
Google Scholar
Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF: Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature. 1992, 360: 273-277. 10.1038/360273a0.
Article
PubMed
Google Scholar
Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM: LEAFY controls floral meristem identity in Arabidopsis. Cell. 1992, 69: 843-859. 10.1016/0092-8674(92)90295-N.
Article
PubMed
Google Scholar
Vriezen WH, Feron R, Maretto F, Keijman J, Mariani C: Changes in tomato ovary transcriptome demonstrate complex hormonal regulation of fruit set. New Phytol. 2008, 177: 60-76.
PubMed
Google Scholar
Galpaz N, Wang Q, Menda N, Zamir D, Hirschberg J: Abscisic acid deficiency in the tomato mutant high-pigment 3 leading to increased plastid number and higher fruit lycopene content. Plant J. 2008, 53: 717-730. 10.1111/j.1365-313X.2007.03362.x.
Article
PubMed
Google Scholar
Riou-Khamlichi C, Huntley R, Jacqmard A, Murray JAH: Cytokinin activation of Arabidopsis cell division through a D-type cyclin. Science. 1999, 283: 1541-1544. 10.1126/science.283.5407.1541.
Article
PubMed
Google Scholar
Knaap van der E, Sanyal A, Jackson SA, Tanksley SD: High-resolution fine mapping and fluorescence in situ hybridization analysis of sun, a locus controlling tomato fruit shape, reveals a region of the tomato genome prone to DNA rearrangements. Genetics. 2004, 168: 2127-2140. 10.1534/genetics.104.031013.
Article
PubMed
PubMed Central
Google Scholar
Jensen WA: Botanical Histochemistry: Principles and Practice. San Francisco: W H Freeman; 1962.
Google Scholar
Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP: Summaries of Affymetrix GeneChip probe level data. Nucl Acids Res. 2003, 31: e15-10.1093/nar/gng015.
Article
PubMed
PubMed Central
Google Scholar
Edgar R, Domrachev M, Lash AE: Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002, 30: 207-210. 10.1093/nar/30.1.207.
Article
PubMed
PubMed Central
Google Scholar
Wan CY, Wilkins TA: A modified hot borate method significantly enhances the yield of high-quality RNA from cotton (Gossypium hirsutum L.). Anal Biochem. 1994, 223: 7-12. 10.1006/abio.1994.1538.
Article
PubMed
Google Scholar