Pimental D, Lach L, Zuniga R, Morrison D: Environmental and economic costs associated with nonindigenous species in the United States. Biological Invasions. 2002, 285-303.
Chapter
Google Scholar
Hierro JL, Maron JL, Callaway RM: A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. Journal of Ecology. 2005, 93: 5-15. 10.1111/j.0022-0477.2004.00953.x.
Article
Google Scholar
Elton C, (Ed): The ecology of invasions by animals and plants. Chicago: The University of Chicago Press; 1958:
Google Scholar
Blossey B, Notzold R: Evolution of Increased Competitive Ability in Invasive Nonindigenous Plants – a Hypothesis. Journal of Ecology. 1995, 83: 887-889. 10.2307/2261425.
Article
Google Scholar
Bossdorf O, Auge H, Lafuma L, Rogers WE, Siemann E, Prati D: Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia. 2005, 144: 1-11. 10.1007/s00442-005-0070-z.
Article
PubMed
Google Scholar
Meijden van der E: Plant defence, an evolutionary dilemma: contrasting effects of (specialist and generalist) herbivores and natural enemies. Entomologia Experimentalis et Applicata. 1996, 80: 307-310. 10.1007/BF00194780.
Article
Google Scholar
Joshi J, Vrieling K: The enemy release and EICA hypothesis revisited: incorporating the fundamental difference between specialist and generalist herbivores. Ecology Letters. 2005, 8: 704-714. 10.1111/j.1461-0248.2005.00769.x.
Article
Google Scholar
Muller-Scharer H, Schaffner U: Classical biological control: exploiting enemy escape to manage plant invasions. Biological Invasions. 2008, 10: 859-874. 10.1007/s10530-008-9238-x.
Article
Google Scholar
Muller-Scharer H, Schaffner U, Steinger T: Evolution in invasive plants: implications for biological control. Trends in Ecology & Evolution. 2004, 19: 417-422. 10.1016/j.tree.2004.05.010.
Article
Google Scholar
Coley PD, Bryant JP, Chapin FS: Resource Availability and Plant Antiherbivore Defense. Science. 1985, 230: 895-899. 10.1126/science.230.4728.895.
Article
PubMed
Google Scholar
Zhang DY, Jiang XH: Interactive effects of habitat productivity and herbivore pressure on the evolution of anti-herbivore defense in invasive plant populations. Journal of Theoretical Biology. 2006, 242: 935-940. 10.1016/j.jtbi.2006.05.016.
Article
PubMed
Google Scholar
Cipollini D, Mbagwu J, Barto K, Hillstrom C, Enright S: Expression of constitutive and inducible chemical defenses in native and invasive populations of Alliaria petiolata. Journal of Chemical Ecology. 2005, 31: 1255-1267. 10.1007/s10886-005-5284-3.
Article
PubMed
Google Scholar
Inderjit , Callaway RM, Vivanco JM: Can plant biochemistry contribute to understanding of invasion ecology?. Trends in Plant Science. 2006, 11: 574-580. 10.1016/j.tplants.2006.10.004.
Article
PubMed
Google Scholar
Anderson JV, Horvath DP, Chao WS, Foley ME, Hernandez AG, Thimmapuram J, Liu L, Gong GL, Band M, Kim R, Mikel MA: Characterization of an EST database for the perennial weed leafy spurge: An important resource for weed biology research. Weed Science. 2007, 55: 193-203. 10.1614/WS-06-138.1.
Article
Google Scholar
Broz AK, Broeckling CD, He JB, Dai X, Zhao PX, Vivanco JM: A first step in understanding an invasive weed through its genes: an EST analysis of invasive Centaurea maculosa. Bmc Plant Biology. 2007, 7: 25-10.1186/1471-2229-7-25.
Article
PubMed
PubMed Central
Google Scholar
Maddox DM: The knapweeds: their economics and biological control in the western states. USA Rangelands. 1979, 1: 139-141.
Google Scholar
Mauer T, Russo MJ, Evans M: Element Stewardship Abstract: Spotted Knapweed Centaurea maculosa. 2001, The Nature Conservancy, Arlington VA, [http://www.invasive.org/gist/esadocs/documnts/centmac.pdf].
Google Scholar
Plants Database. [http://plants.usda.gov].
Hufbauer RA, Sforza R: Multiple introductions of two invasive Centaurea taxa inferred from cpDNA haplotypes. Diversity and Distributions. 2008, 14: 252-261. 10.1111/j.1472-4642.2007.00424.x.
Article
Google Scholar
Marrs RA, Sforza R, Hufbauer RA: When invasion increases population genetic structure: a study with Centaurea diffusa. Biological Invasions. 2008, 10: 561-572. 10.1007/s10530-007-9153-6.
Article
Google Scholar
Ochsmann J: On the taxonomy of spotted knapweed (Centaurea stoebe L.). Proceedings from The First International Knapweed Symposium of the Twenty First Century. Edited by: Smith L. Albany, CA: USDA-ARS; 2001:33-41.
Google Scholar
Treier UA, Broennimann O, Normand S, Guisan A, Schaffner U, Steinger T, Muller-Scharer H: Shift in cytotype frequency and niche space in the invasive plant Centaurea maculosa. Ecology. 2009, 90 (5): 1366-1377.
Article
PubMed
Google Scholar
Sheley RL, Jacobs JS, Carpinelli MF: Distribution, biology, and management of diffuse knapweed (Centaurea diffusa) and spotted knapweed (Centaurea maculosa). Weed Technology. 1998, 12: 353-362.
Google Scholar
Broennimann O, Treier UA, Muller-Scharer H, Thuiller W, Peterson AT, Guisan A: Evidence of climatic niche shift during biological invasion. Ecology Letters. 2007, 10: 701-709. 10.1111/j.1461-0248.2007.01060.x.
Article
PubMed
Google Scholar
Muller H: Growth-Pattern of Diploid and Tetraploid Spotted Knapweed, Centaurea-Maculosa Lam (Compositae), and Effects of the Root-Mining Moth Agapeta-Zoegana (L) (Lep, Cochylidae). Weed Research. 1989, 29: 103-111. 10.1111/j.1365-3180.1989.tb00847.x.
Article
Google Scholar
Soltis PS, Soltis DE: The role of genetic and genomic attributes in the success of polyploids. Proceedings of the National Academy of Sciences of the United States of America. 2000, 97: 7051-7057. 10.1073/pnas.97.13.7051.
Article
PubMed
PubMed Central
Google Scholar
Kazazian HH: Mobile elements: Drivers of genome evolution. Science. 2004, 303: 1626-1632. 10.1126/science.1089670.
Article
PubMed
Google Scholar
Morgante M: Plant genome organisation and diversity: the year of the junk!. Current Opinion in Biotechnology. 2006, 17: 168-173.
Article
PubMed
Google Scholar
Ponder RG, Fonville NC, Rosenberg SM: A switch from high-fidelity to error-prone DNA double-strand break repair underlies stress-induced mutation. Molecular Cell. 2005, 19: 791-804. 10.1016/j.molcel.2005.07.025.
Article
PubMed
Google Scholar
Dhawan OP, Lavania UC: Enhancing the productivity of secondary metabolites via induced polyploidy: A review. Euphytica. 1996, 87: 81-89. 10.1007/BF00021879.
Article
Google Scholar
Ridenour WM, Vivanco JM, Feng YL, Horiuchi J, Callaway RM: No evidence for trade-offs: Centaurea plants from America are better competitors and defenders. Ecological Monographs. 2008, 78: 369-386. 10.1890/06-1926.1.
Article
Google Scholar
La Camera S, Gouzerh G, Dhondt S, Hoffmann L, Fritig B, Legrand M, Heitz T: Metabolic reprogramming in plant innate immunity: the contributions of phenylpropanoid and oxylipin pathways. Immunological Reviews. 2004, 198: 267-284. 10.1111/j.0105-2896.2004.0129.x.
Article
PubMed
Google Scholar
Treutter D: Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biology. 2005, 7: 581-591. 10.1055/s-2005-873009.
Article
PubMed
Google Scholar
Winkel-Shirley B: Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology. 2001, 126: 485-493. 10.1104/pp.126.2.485.
Article
PubMed
PubMed Central
Google Scholar
Doxey AC, Yaish MWF, Moffatt BA, Griffith M, McConkey BJ: Functional divergence in the Arabidopsis beta-1,3-glucanase gene family inferred by phylogenetic reconstruction of expression states. Molecular Biology and Evolution. 2007, 24: 1045-1055. 10.1093/molbev/msm024.
Article
PubMed
Google Scholar
Jwa NS, Agrawal GK, Tamogami S, Yonekura M, Han O, Iwahashi H, Rakwal R: Role of defense/stress-related marker genes, proteins and secondary metabolites in defining rice self-defense mechanisms. Plant Physiology and Biochemistry. 2006, 44: 261-273. 10.1016/j.plaphy.2006.06.010.
Article
PubMed
Google Scholar
Kasprzewska A: Plant chitinases – Regulation and function. Cellular & Molecular Biology Letters. 2003, 8: 809-824.
Google Scholar
Bowling SA, Guo A, Cao H, Gordon AS, Klessig DF, Dong XI: A Mutation in Arabidopsis that Leads to Constitutive Expression of Systemic Acquired-Resistance. Plant Cell. 1994, 6: 1845-1857. 10.1105/tpc.6.12.1845.
Article
PubMed
PubMed Central
Google Scholar
Vleeshouwers V, Van Dooijeweert W, Govers F, Kamoun S, Colon LT: Does basal PR gene expression in Solanum species contribute to non-specific resistance to Phytophthora infestans?. Physiological and Molecular Plant Pathology. 2000, 57: 35-42. 10.1006/pmpp.2000.0278.
Article
Google Scholar
Maleck K, Lawton K: Plant strategies for resistance to pathogens. Current Opinion in Biotechnology. 1998, 9: 208-213. 10.1016/S0958-1669(98)80117-1.
Article
Google Scholar
Stintzi A, Heitz T, Prasad V, Wiedemannmerdinoglu S, Kauffmann S, Geoffroy P, Legrand M, Fritig B: Plant Pathogenesis-Related Proteins and Their Role in Defense Against Pathogens. Biochimie. 1993, 75: 687-706. 10.1016/0300-9084(93)90100-7.
Article
PubMed
Google Scholar
Maddox DM: Biological-Control of Diffuse Knapweed (Centaurea-Diffusa) and Spotted Knapweed (C Maculosa). Weed Science. 1982, 30: 76-82.
Google Scholar
Smith L, Story JM: Plant size preference of Agapeta zoegana L. (Lepidoptera: Tortricidae), a root-feeding biological control agent of spotted knapweed. Biological Control. 2003, 26: 270-278. 10.1016/S1049-9644(02)00169-X.
Article
Google Scholar
Story JM, Callan NW, Corn JG, White LJ: Decline of spotted knapweed density at two sites in western Montana with large populations of the introduced root weevil, Cyphocleonus achates (Fahraeus). Biological Control. 2006, 38: 227-232. 10.1016/j.biocontrol.2005.12.018.
Article
Google Scholar
Ivanov EL, Haber JE: DNA repair: RAD alert. Current Biology. 1997, 7: R492-R495. 10.1016/S0960-9822(06)00246-6.
Article
PubMed
Google Scholar
Kimura Y, Tosa Y, Shimada S, Sogo R, Kusaba M, Sunaga T, Betsuyaku S, Eto Y, Nakayashiki H, Mayama S: OARE-1, a Ty1-copia retrotransposon in oat activated by abiotic and biotic stresses. Plant and Cell Physiology. 2001, 42: 1345-1354. 10.1093/pcp/pce171.
Article
PubMed
Google Scholar
Takeda S, Sugimoto K, Otsuki H, Hirochika H: Transcriptional activation of the tobacco retrotransposon Tto1 by wounding and methyl jasmonate. Plant Molecular Biology. 1998, 36: 365-376. 10.1023/A:1005911413528.
Article
PubMed
Google Scholar
Chen ZJ: Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annual Review of Plant Biology. 2007, 58: 377-406. 10.1146/annurev.arplant.58.032806.103835.
Article
PubMed
PubMed Central
Google Scholar
Chen ZJ, Ni ZF: Mechanisms of genomic rearrangements and gene expression changes in plant polyploids. Bioessays. 2006, 28: 240-252. 10.1002/bies.20374.
Article
PubMed
Google Scholar
Hegarty MJ, Hiscock SJ: Genomic clues to the evolutionary success of review polyploid plants. Current Biology. 2008, 18: R435-R444. 10.1016/j.cub.2008.03.043.
Article
PubMed
Google Scholar
Albertin W, Brabant P, Catrice O, Eber F, Jenczewski E, Chevre AM, Thiellement H: Autopolyploidy in cabbage (Brassica oleracea L.) does not alter significantly the proteomes of green tissues. Proteomics. 2005, 5: 2131-2139. 10.1002/pmic.200401092.
Article
PubMed
Google Scholar
Guo M, Davis D, Birchler JA: Dosage effects on gene expression in a maize ploidy series. Genetics. 1996, 142: 1349-1355.
PubMed
PubMed Central
Google Scholar
Wang JL, Tian L, Lee HS, Wei NE, Jiang HM, Watson B, Madlung A, Osborn TC, Doerge RW, Comai L, Chen ZJ: Genomewide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics. 2006, 172: 507-517. 10.1534/genetics.105.047894.
Article
PubMed
PubMed Central
Google Scholar
Dangl JL, Jones JDG: Plant pathogens and integrated defence responses to infection. Nature. 2001, 411: 826-833. 10.1038/35081161.
Article
PubMed
Google Scholar
Weiner J, Martinez S, MullerScharer H, Stoll P, Schmid B: How important are environmental maternal effects in plants? A study with Centaurea maculosa. Journal of Ecology. 1997, 85: 133-142. 10.2307/2960645.
Article
Google Scholar
Olsen KM, Lea US, Slimestad R, Verheul M, Lillo C: Differential expression of four Arabidopsis PAL genes; PAL1 and PAL2 have functional specialization in abiotic environmental-triggered flavonoid synthesis. Journal of Plant Physiology. 2008, 165: 1491-1499. 10.1016/j.jplph.2007.11.005.
Article
PubMed
Google Scholar
Rookes JE, Cahill DM: A PAL1 gene promoter-green fluorescent protein reporter system to analyse defence responses in live cells of Arabidopsis thaliana. European Journal of Plant Pathology. 2003, 109: 83-94. 10.1023/A:1022062904989.
Article
Google Scholar
Staginnus C, Huettel B, Desel C, Schmidt T, Kahl G: A PCR-based assay to detect En/Spm-like transposon sequences in plants. Chromosome Research. 2001, 9: 591-605. 10.1023/A:1012455520353.
Article
PubMed
Google Scholar
He J, Dai XB, Zhao XC: PLAN: a web platform for automating high-throughput BLAST searches and for managing and mining results. Bmc Bioinformatics. 2007, 8: 53-10.1186/1471-2105-8-53.
Article
PubMed
PubMed Central
Google Scholar
Weller SA, Elphinstone JG, Smith NC, Boonham N, Stead DE: Detection of Ralstonia solanacearum strains with a quantitative, multiplex, real-time, fluorogenic PCR (TaqMan) assay. Applied and Environmental Microbiology. 2000, 66: 2853-2858. 10.1128/AEM.66.7.2853-2858.2000.
Article
PubMed
PubMed Central
Google Scholar
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology. 2002, 3: research0034-10.1186/gb-2002-3-7-research0034.
Article
PubMed
PubMed Central
Google Scholar