Kochian LV, Hoekenga OA, Pineros MA: How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol. 2004, 55: 459-493.
Article
PubMed
Google Scholar
Kinraide TB, Pedler JF, Parker DR: Relative effectiveness of calcium and magnesium in the alleviation of rhizotoxicity in wheat induced by copper, zinc, aluminum, sodium, and low pH. Plant Soil. 2004, 259: 201-208.
Article
Google Scholar
Wu SJ, Ding L, Zhu JK: SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell. 1996, 8: 617-627.
Article
PubMed
PubMed Central
Google Scholar
Zhu JK, Liu J, Xiong L: Genetic analysis of salt tolerance in Arabidopsis. Evidence for a critical role of potassium nutrition. Plant Cell. 1998, 10: 1181-1191.
Article
PubMed
PubMed Central
Google Scholar
Howden R, Cobbett CS: Cadmium-Sensitive Mutants of Arabidopsis thaliana. Plant Physiol. 1992, 100: 100-107.
Article
PubMed
PubMed Central
Google Scholar
Larsen PB, Geisler MJ, Jones CA, Williams KM, Cancel JD: ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis. Plant J. 2005, 41: 353-363.
Article
PubMed
Google Scholar
Yamaguchi-Shinozaki K, Shinozaki K: A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell. 1994, 6: 251-264.
Article
PubMed
PubMed Central
Google Scholar
Ezaki B, Gardner RC, Ezaki Y, Matsumoto H: Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress. Plant Physiol. 2000, 122: 657-665.
Article
PubMed
PubMed Central
Google Scholar
Hoekenga OA, Maron LG, Pineros MA, Cancado GM, Shaff J, Kobayashi Y, Ryan PR, Dong B, Delhaize E, Sasaki T, Matsumoto H, Yamamoto Y, Koyama H, Kochian LV: AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc Natl Acad Sci USA. 2006, 103: 9738-9743.
Article
PubMed
PubMed Central
Google Scholar
Jiang Y, Deyholos MK: Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biol. 2006, 6: 25
Article
PubMed
PubMed Central
Google Scholar
Kumari M, Taylor GJ, Deyholos MK: Transcriptomic responses to aluminum stress in roots of Arabidopsis thaliana. Mol Genet Genomics. 2008, 279: 339-357.
Article
PubMed
Google Scholar
Guo P, Bai G, Carver B, Li R, Bernardo A, Baum M: Transcriptional analysis between two wheat near-isogenic lines contrasting in aluminum tolerance under aluminum stress. Mol Genet Genomics. 2007, 277: 1-12.
Article
PubMed
Google Scholar
Maron LG, Kirst M, Mao C, Milner MJ, Menossi M, Kochian LV: Transcriptional profiling of aluminum toxicity and tolerance responses in maize roots. New Phytol. 2008, 179: 116-128.
Article
PubMed
Google Scholar
Chandran D, Sharopova N, VandenBosch KA, Garvin DF, Samac DA: Physiological and molecular characterization of aluminum resistance in Medicago truncatula. BMC Plant Biol. 2008, 8: 89
Article
PubMed
PubMed Central
Google Scholar
Reymond P, Weber H, Damond M, Farmer EE: Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell. 2000, 12: 707-720.
Article
PubMed
PubMed Central
Google Scholar
Toda T, Koyama H, Hara T: A simple hydroponic culture method for the development of a highly viable root system in Arabidopsis thaliana. Biosci Biotechnol Biochem. 1999, 63: 210-212.
Article
PubMed
Google Scholar
Koyama H, Toda T, Hara T: Brief exposure to low-pH stress causes irreversible damage to the growing root in Arabidopsis thaliana : pectin-Ca interaction may play an important role in proton rhizotoxicity. J Exp Bot. 2001, 52: 361-368.
Article
PubMed
Google Scholar
Kobayashi Y, Ikka T, Kimura K, Yasuda O, Koyama H: Characterisation of lanthanum toxicity for root growth of Arabidopsis thaliana from the aspect of natural genetic variation. Funct Plant Biol. 2007, 34: 984-994.
Article
Google Scholar
Ikka T, Kobayashi Y, Iuchi S, Sakurai N, Shibata D, Kobayashi M, Koyama H: Natural variation of Arabidopsis thaliana reveals that aluminum resistance and proton resistance are controlled by different genetic factors. Theor Appl Genet. 2007, 115: 709-719.
Article
PubMed
Google Scholar
Suzuki Y, Kawazu T, Koyama H: RNA isolation from siliques, dry seeds, and other tissues of Arabidopsis thaliana. BioTechniques. 2004, 37: 542-544.
PubMed
Google Scholar
Chen K, Du L, Chen Z: Sensitization of defense responses and activation of programmed cell death by a pathogen-induced receptor-like protein kinase in Arabidopsis. Plant Mol Biol. 2003, 53: 61-74.
Article
PubMed
Google Scholar
Kinraide TB: Interactions among Ca2+, Na+ and K+ in salinity toxicity: quantitative resolution of multiple toxic and ameliorative effects. J Exp Bot. 1999, 50: 1495-1505.
Article
Google Scholar
Heidenreich B, Mayer K, Sandermann H, Ernst D: Mercury-induced genes in Arabidopsis thaliana : identification of induced genes upon long-term mercuric ion exposure. Plant, Cell Environ. 2001, 24: 1227-1234.
Article
Google Scholar
Kawaura K, Mochida K, Yamazaki Y, Ogihara Y: Transcriptome analysis of salinity stress responses in common wheat using a 22 k oligo-DNA microarray. Funct Integr Genomics. 2006, 6: 132-142.
Article
PubMed
Google Scholar
Elbein AD, Pan YT, Pastuszak I, Carroll D: New insights on trehalose: a multifunctional molecule. Glycobiology. 2003, 13: 17R-27R.
Article
PubMed
Google Scholar
Roxas V, Smith R, Allen E, Allen R: Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nat Biotechnol. 1997, 15: 988-991.
Article
PubMed
Google Scholar
Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ: Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA. 2002, 99: 15898-15903.
Article
PubMed
PubMed Central
Google Scholar
Wang W, Vinocur B, Altman A: Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta. 2003, 218: 1-14.
Article
PubMed
Google Scholar
Vanderbeld B, Snedden WA: Developmental and stimulus-induced expression patterns of Arabidopsis calmodulin-like genes CML37, CML38 and CML39. Plant Mol Biol. 2007, 64: 683-697.
Article
PubMed
Google Scholar
Ciftci-Yilmaz S, Morsy MR, Song L, Coutu A, Krizek BA, Lewis MW, Warren D, Cushman J, Connolly EL, Mittler R: The EAR-motif of the Cys2/His2-type zinc finger protein Zat7 plays a key role in the defense response of Arabidopsis to salinity stress. J Biol Chem. 2007, 282: 9260-9268.
Article
PubMed
Google Scholar
Kobayashi Y, Hoekenga OA, Itoh H, Nakashima M, Saito S, Shaff JE, Maron LG, Pineros MA, Kochian LV, Koyama H: Characterization of AtALMT1 expression in aluminum-inducible malate release and its role for rhizotoxic stress tolerance in Arabidopsis. Plant Physiol. 2007, 145: 843-852.
Article
PubMed
PubMed Central
Google Scholar
de la Fuente JM, Ramirez-Rodriguez V, Cabrera-Ponce JL, Herrera-Estrella L: Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science. 1997, 276: 1566-1568.
Article
PubMed
Google Scholar
Schenk PM, Kazan K, Rusu AG, Manners JM, Maclean DJ: The SEN1 gene of Arabidopsis is regulated by signals that link plant defence responses and senescence. Plant Physiol Biochem. 2005, 43: 997-1005.
Article
PubMed
Google Scholar
Devoto A, Ellis C, Magusin A, Chang HS, Chilcott C, Zhu T, Turner JG: Expression profiling reveals COI1 to be a key regulator of genes involved in wound- and methyl jasmonate-induced secondary metabolism, defence, and hormone interactions. Plant Mol Biol. 2005, 58: 497-513.
Article
PubMed
Google Scholar
Last RL, Bissinger PH, Mahoney DJ, Radwanski ER, Fink GR: Tryptophan mutants in Arabidopsis : the consequences of duplicated tryptophan synthase beta genes. Plant Cell. 1991, 3: 345-358.
PubMed
PubMed Central
Google Scholar
Radwanski ER, Zhao J, Last RL: Arabidopsis thaliana tryptophan synthase alpha: gene cloning, expression, and subunit interaction. Mol Gen Genet. 1995, 248: 657-667.
Article
PubMed
Google Scholar
Vogel G, Fiehn O, Jean-Richard-dit-Bressel L, Boller T, Wiemken A, Aeschbacher RA, Wingler A: Trehalose metabolism in Arabidopsis : occurrence of trehalose and molecular cloning and characterization of trehalose-6-phosphate synthase homologues. J Exp Bot. 2001, 52: 1817-1826.
Article
PubMed
Google Scholar
Gelhaye E, Rouhier N, Navrot N, Jacquot JP: The plant thioredoxin system. Cell Mol Life Sci. 2005, 62: 24-35.
Article
PubMed
Google Scholar
Gupta SD, Wu HC, Rick PD: A Salmonella typhimurium genetic locus which confers copper tolerance on copper-sensitive mutants of Escherichia coli. J Bacteriol. 1997, 179: 4977
PubMed
PubMed Central
Google Scholar
Holmgren A: Thioredoxin structure and mechanism: conformational changes on oxidation of the active-site sulfhydryls to a disulfide. Structure. 1995, 3: 239-243.
Article
PubMed
Google Scholar
Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K: Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell. 1998, 10: 1391-1406.
Article
PubMed
PubMed Central
Google Scholar
Barcelo J, Poschenrieder C, Andreu I, Gunse B: Cadmium-induced decrease of water stress resistance in bush bean plants (Phaseolus vulgaris L. cv. Contender). I. Effects of Cd on water potential, relative water content and cell wall elasticity. J Plant Physiol. 125: 17-25.
Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W: GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol. 2004, 136: 2621-2632.
Article
PubMed
PubMed Central
Google Scholar
Matsumoto H: Cell biology of aluminum toxicity and tolerance in higher plants. Int Rev Cytol. 2000, 200: 1-46.
Article
PubMed
Google Scholar
Sudo E, Itouga M, Yoshida-Hatanaka K, Ono Y, Sakakibara H: Gene expression and sensitivity in response to copper stress in rice leaves. J Exp Bot. 2008, 59: 3465-3474.
Article
PubMed
PubMed Central
Google Scholar
Yang ZM, Wang J, Wang SH, Xu LL: Salicylic acid-induced aluminum tolerance by modulation of citrate efflux from roots of Cassia tora L. Planta. 2003, 217: 168-174.
PubMed
Google Scholar
Borsani O, Valpuesta V, Botella MA: Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol. 2001, 126: 1024-1030.
Article
PubMed
PubMed Central
Google Scholar
Metwally A, Finkemeier I, Georgi M, Dietz KJ: Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol. 2003, 132: 272-281.
Article
PubMed
PubMed Central
Google Scholar
El-Tayeb MA, El-Enany AE, Ahmed NL: Salicylic acid-induced adaptive response to copper stress in sunflower (Helianthus annuus L.). Plant Growth Regulation. 2006, 50: 191-199.
Article
Google Scholar
Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA. 1998, 95: 14863-14868.
Article
PubMed
PubMed Central
Google Scholar
Obayashi T, Kinoshita K, Nakai K, Shibaoka M, Hayashi S, Saeki M, Shibata D, Saito K, Ohta H: ATTED-II: a database of co-expressed genes and cis elements for identifying co-regulated gene groups in Arabidopsis. Nucleic Acids Res. 2007, D863-9. 35 Database.
Kobayashi Y, Furuta Y, Ohno T, Hara T, Koyama H: Quantitative trait loci controlling aluminium tolerance in two accessions of Arabidopsis thaliana (Landsberg erecta and Cape Verde Islands). Plant Cell Environ. 2005, 28: 1516-1524.
Article
Google Scholar
Berardini TZ, Mundodi S, Reiser L, Huala E, Garcia-Hernandez M, Zhang P, Mueller LA, Yoon J, Doyle A, Lander G, Moseyko N, Yoo D, Xu I, Zoeckler B, Montoya M, Miller N, Weems D, Rhee SY: Functional annotation of the Arabidopsis genome using controlled vocabularies. Plant Physiol. 2004, 135: 745-755.
Article
PubMed
PubMed Central
Google Scholar