Salin ML: Chloroplast and mitochondrial mechanisms for protection against oxygen toxicity. Free Radic Res Commun. 1991, 12–13 (Pt 2): 851-858.
Article
PubMed
Google Scholar
Mittler R, Vanderauwera S, Gollery M, Van Breusegem F: Reactive oxygen gene network of plants. Trends in Plant Science. 2004, 9 (10): 490-498.
Article
PubMed
Google Scholar
Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem F: Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci. 2000, 57 (5): 779-795.
Article
PubMed
Google Scholar
Foyer CH, Noctor G: Leaves in the dark see the light. Science. 1999, 284 (5414): 599-601.
Article
PubMed
Google Scholar
Dalton TD, Shertzer HG, Puga A: Regulation of gene expression by reactive oxygen. Annu Rev Pharmacol Toxicol. 1999, 39: 67-101.
Article
PubMed
Google Scholar
Scandalios JG: Oxidative stress responses – what have genome-scale studies taught us?. Genome Biol. 2002, 3 (7): REVIEWS1019
Article
PubMed
PubMed Central
Google Scholar
Rutherford AW, Krieger-Liszkay A: Herbicide-induced oxidative stress in photosystem II. Trends in Biochem Sci. 2001, 26 (11): 648-653.
Article
Google Scholar
Macpherson AN, Telfer A, Barber J, Truscott TG: Direct-detection of singlet oxygen from isolated photosystem-II reaction centers. Biochim Biophys Acta. 1993, 1143 (3): 301-309.
Article
Google Scholar
Telfer A, Dhami S, Bishop SM, Phillips D, Barber J: β-carotene quenches singlet oxygen formed by isolated photosystem-II reaction centers. Biochemistry. 1994, 33 (48): 14469-14474.
Article
PubMed
Google Scholar
Solomon KR, Baker DB, Richards RP, Dixon DR, Klaine SJ, LaPoint TW, Kendall RJ, Weisskopf CP, Giddings JM, Giesy JP, et al: Ecological risk assessment of atrazine in North American surface waters. Environ Toxicol Chem. 1996, 15 (1): 31-74.
Article
Google Scholar
Clark GM, Goolsby DA, Battaglin WA: Seasonal and annual load of herbicides from the Mississippi River basin to the Gulf of Mexico. Environ Sci Technol. 1999, 33 (7): 981-986.
Article
Google Scholar
Millie DF, Hersh CM: Statistical characterizations of the atrazine-induced photosynthetic inhibition of Cyclotella meneghiniana (Bacillariophyta). Aquat Toxicol. 1987, 10 (4): 239-249.
Article
Google Scholar
Hersh CM, Crumpton WG: Atrazine tolerance of algae isolated from 2 agricultural streams. Environ Toxicol Chem. 1989, 8 (4): 327-332.
Article
Google Scholar
Sibony M, Rubin B: Molecular basis for multiple resistance to acetolactate synthase-inhibiting herbicides and atrazine in Amaranthus blitoides (prostrate pigweed). Planta. 2003, 216 (6): 1022-1027.
PubMed
Google Scholar
Sulmon C, Gouesbet G, Binet F, Martin-Laurent F, El Amrani A, Couee I: Sucrose amendment enhances phytoaccumulation of the herbicide atrazine in Arabidopsis thaliana. Environ Pollut. 2007, 145 (2): 507-515.
Article
PubMed
Google Scholar
Sulmon C, Gouesbet G, El Amrani A, Couee I: Sugar-induced tolerance to the herbicide atrazine in Arabidopsis seedlings involves activation of oxidative and xenobiotic stress responses. Plant Cell Rep. 2006, 25 (5): 489-498.
Article
PubMed
Google Scholar
Sulmon C, Gouesbet G, Couee I, El Amrani A: Sugar-induced tolerance to atrazine in Arabidopsis seedlings: interacting effects of atrazine and soluble sugars on psbA mRNA and D1 protein levels. Plant Sci. 2004, 167 (4): 913-923.
Article
Google Scholar
Ramel F, Sulmon C, Cabello-Hurtado F, Taconnat L, Martin-Magniette ML, Renou JP, Elamrani A, Couee I, Gouesbet G: Genome-wide interacting effects of sucrose and herbicide-mediated stress in Arabidopsis thaliana : novel insights into atrazine toxicity and sucrose-induced tolerance. BMC Genomics. 2007, 8 (1): 450
Article
PubMed
PubMed Central
Google Scholar
Foyer CH: Prospects for enhancement of the soluble antioxidants, ascorbate and glutathione. Biofactors. 2001, 15 (2–4): 75-78.
Article
PubMed
Google Scholar
DellaPenna D, Pogson BJ: Vitamin synthesis in plants: Tocopherols and carotenoids. Annu Rev Plant Biol. 2006, 57: 711-738.
Article
PubMed
Google Scholar
Asada K: Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 2006, 141 (2): 391-396.
Article
PubMed
PubMed Central
Google Scholar
Bowler C, Slooten L, Vandenbranden S, De Rycke R, Botterman J, Sybesma C, Van Montagu M, Inze D: Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J. 1991, 10 (7): 1723-1732.
PubMed
PubMed Central
Google Scholar
Bowler C, Alliotte T, De Loose M, Van Montagu M, Inze D: The induction of manganese superoxide dismutase in response to stress in Nicotiana plumbaginifolia. EMBO J. 1989, 8 (1): 31-38.
PubMed
PubMed Central
Google Scholar
Perl A, Perltreves R, Galili S, Aviv D, Shalgi E, Malkin S, Galun E: Enhanced oxidative-stress defense in transgenic potato expressing tomato Cu, Zn superoxide dismutases. Theor Appl Genet. 1993, 85 (5): 568-576.
Article
PubMed
Google Scholar
Gupta AS, Heinen JL, Holaday AS, Burke JJ, Allen RD: Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide-dismutase. Proc Natl Acad Sci USA. 1993, 90 (4): 1629-1633.
Article
PubMed
PubMed Central
Google Scholar
Martin T, Oswald O, Graham IA: Arabidopsis seedling growth, storage lipid mobilization, and photosynthetic gene expression are regulated by carbon: nitrogen availability. Plant Physiol. 2002, 128 (2): 472-481.
Article
PubMed
PubMed Central
Google Scholar
Hideg E, Barta C, Kalai T, Vass I, Hideg K, Asada K: Detection of singlet oxygen and superoxide with fluorescent sensors in leaves under stress by photoinhibition or UV radiation. Plant Cell Physiol. 2002, 43 (10): 1154-1164.
Article
PubMed
Google Scholar
Hoffmann A, Hammes E, Plieth C, Desel C, Sattelmacher B, Hansen UP: Effect of CO2 supply on formation of reactive oxygen species in Arabidopsis thaliana. Protoplasma. 2005, 227 (1): 3-9.
Article
PubMed
Google Scholar
Nakagami H, Soukupova H, Schikora A, Zarsky V, Hirt H: A mitogen-activated protein kinase kinase kinase mediates reactive oxygen species homeostasis in Arabidopsis. J Biol Chem. 2006, 281 (50): 38697-38704.
Article
PubMed
Google Scholar
Kalbina I, Strid A: Supplementary ultraviolet-B irradiation reveals differences in stress responses between Arabidopsis thaliana ecotypes. Plant Cell Environ. 2006, 29 (5): 754-763.
Article
PubMed
Google Scholar
Flors C, Fryer MJ, Waring J, Reeder B, Bechtold U, Mullineaux PM, Nonell S, Wilson MT, Baker NR: Imaging the production of singlet oxygen in vivo using a new fluorescent sensor, Singlet Oxygen Sensor Green®. J Exp Bot. 2006, 57 (8): 1725-1734.
Article
PubMed
Google Scholar
Fryer MJ, Oxborough K, Mullineaux PM, Baker NR: Imaging of photo-oxidative stress responses in leaves. J Exp Bot. 2002, 53 (372): 1249-1254.
Article
PubMed
Google Scholar
Thordal-Christensen H, Yangdou Wei ZZ, Collinge DB: Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J. 1997, 11 (6): 1187-1194.
Article
Google Scholar
Huckelhoven R, Fodor J, Trujillo M, Kogel KH: Barley Mla and Rar mutants compromised in the hypersensitive cell death response against Blumeria graminis f.sp hordei are modified in their ability to accumulate reactive oxygen intermediates at sites of fungal invasion. Planta. 2000, 212 (1): 16-24.
Article
PubMed
Google Scholar
Lee BH, Lee H, Xiong L, Zhu JK: A mitochondrial complex I defect impairs cold-regulated nuclear gene expression. Plant Cell. 2002, 14 (6): 1235-1251.
Article
PubMed
PubMed Central
Google Scholar
Dutilleul C, Garmier M, Noctor G, Mathieu C, Chetrit P, Foyer CH, de Paepe R: Leaf mitochondria modulate whole cell redox homeostasis, set antioxidant capacity, and determine stress resistance through altered signaling and diurnal regulation. Plant Cell. 2003, 15 (5): 1212-1226.
Article
PubMed
PubMed Central
Google Scholar
Laloi C, Mestres-Ortega D, Marco Y, Meyer Y, Reichheld JP: The Arabidopsis cytosolic thioredoxin h5 gene induction by oxidative stress and its W-box-mediated response to pathogen elicitor. Plant Physiol. 2004, 134 (3): 1006-1016.
Article
PubMed
PubMed Central
Google Scholar
Marchand C, Le Marechal P, Meyer Y, Miginiac-Maslow M, Issakidis-Bourguet E, Decottignies P: New targets of Arabidopsis thioredoxins revealed by proteomic analysis. Proteomics. 2004, 4 (9): 2696-2706.
Article
PubMed
Google Scholar
Wong JH, Balmer Y, Cai N, Tanaka CK, Vensel WH, Hurkman WJ, Buchanan BB: Unraveling thioredoxin-linked metabolic processes of cereal starchy endosperm using proteomics. FEBS Letters. 2003, 547 (1–3): 151-156.
Article
PubMed
Google Scholar
Yamazaki D, Motohashi K, Kasama T, Hara Y, Hisabori T: Target proteins of the cytosolic thioredoxins in Arabidopsis thaliana. Plant Cell Physiol. 2004, 45 (1): 18-27.
Article
PubMed
Google Scholar
Das KC, Das CK: Thioredoxin, a singlet oxygen quencher and hydroxyl radical scavenger: Redox independent functions. Biochem Biophys Res Commun. 2000, 277 (2): 443-447.
Article
PubMed
Google Scholar
Havaux M, Dall'Osto L, Bassi R: Zeaxanthin has enhanced antioxidant capacity with respect to all other xanthophylls in Arabidopsis leaves and functions independent of binding to PSII antennae. Plant Physiol. 2007, 145 (4): 1506-1520.
Article
PubMed
PubMed Central
Google Scholar
Fryer MJ: The antioxidant effects of thylakoid vitamin-E (alpha-tocopherol). Plant Cell Environ. 1992, 15 (4): 381-392.
Article
Google Scholar
Havaux M, Eymery F, Porfirova S, Rey P, Dormann P: Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana. Plant Cell. 2005, 17 (12): 3451-3469.
Article
PubMed
PubMed Central
Google Scholar
Matysik J, Alia , Bhalu B, Mohanty P: Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci. 2002, 82 (5): 525-532.
Google Scholar
Kliebenstein DJ, Monde RA, Last RL: Superoxide dismutase in Arabidopsis: An eclectic enzyme family with disparate regulation and protein localization. Plant Physiol. 1998, 118 (2): 637-650.
Article
PubMed
PubMed Central
Google Scholar
Apel K, Hirt H: Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 2004, 55: 373-399.
Article
PubMed
Google Scholar
Noctor G, Foyer CH: Ascorbate and glutathione: Keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol. 1998, 49: 249-279.
Article
PubMed
Google Scholar
Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, VanMontagu M, Inze D, VanCamp W: Catalase is a sink for H2O2 and is indispensable for stress defence in C-3 plants. EMBO J. 1997, 16 (16): 4806-4816.
Article
PubMed
PubMed Central
Google Scholar
Laloi C, Przybyla D, Apel K: A genetic approach towards elucidating the biological activity of different reactive oxygen species in Arabidopsis thaliana. J Exp Bot. 2006, 57 (8): 1719-1724.
Article
PubMed
Google Scholar
Scott I, Logan DC: Mitochondrial morphology transition is an early indicator of subsequent cell death in Arabidopsis. New Phytol. 2008, 177 (1): 90-101.
PubMed
Google Scholar
Asada K, Kiso K, Yoshikawa K: Univalent reduction of molecular oxygen by spinach chloroplasts on illumination. J Biol Chem. 1974, 249 (7): 2175-2181.
PubMed
Google Scholar
Couée I, Sulmon C, Gouesbet G, El Amrani A: Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot. 2006, 57 (3): 449-459.
Article
PubMed
Google Scholar
Brouquisse R, James F, Raymond P, Pradet A: Study of glucose starvation in excised maize root-tips. Plant Physiol. 1991, 96 (2): 619-626.
Article
PubMed
PubMed Central
Google Scholar
Hooks MA, Bode K, Couee I: Regulation of acyl-coa oxidases in maize seedlings. Phytochemistry. 1995, 40 (3): 657-660.
Article
Google Scholar
Däschner K, Couée I, Binder S: The mitochondrial isovaleryl-coenzyme A dehydrogenase of Arabidopsis oxidizes intermediates of leucine and valine catabolism. Plant Physiol. 2001, 126 (2): 601-612.
Article
PubMed
PubMed Central
Google Scholar
Batish DR, Singh HP, Setia N, Kaur S, Kohli RK: 2-Benzoxazolinone (BOA) induced oxidative stress, lipid peroxidation and changes in some antioxidant enzyme activities in mung bean (Phaseolus aureus). Plant Physiol Biochem. 2006, 44 (11–12): 819-827.
Article
PubMed
Google Scholar
Shao N, Krieger-Liszkay A, Schroda M, Beck CF: A reporter system for the individual detection of hydrogen peroxide and singlet oxygen: its use for the assay of reactive oxygen species produced in vivo. Plant J. 2007, 50 (3): 475-487.
Article
PubMed
Google Scholar
Chao L, Zhou QX, Chen S, Cui S, Wang ME: Single and joint stress of acetochlor and Pb on three agricultural crops in northeast China. J Environ Sci (China). 2007, 19 (6): 719-724.
Article
Google Scholar
Tewari R, Hahn E-J, Paek K-Y: Modulation of copper toxicity-induced oxidative damage by nitric oxide supply in the adventitious roots of Panax ginseng. Plant Cell Reports. 2008, 27 (1): 171-181.
Article
PubMed
Google Scholar
Orozco-Cardenas M, Ryan CA: Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc Natl Acad Sci USA. 1999, 96 (11): 6553-6557.
Article
PubMed
PubMed Central
Google Scholar
Laloi C, Apel K, Danon A: Reactive oxygen signalling: the latest news. Curr Opin Plant Biol. 2004, 7 (3): 323-328.
Article
PubMed
Google Scholar
Laloi C, Stachowiak M, Pers-Kamczyc E, Warzych E, Murgia I, Apel K: Cross-talk between singlet oxygen- and hydrogen peroxide-dependent signaling of stress responses in Arabidopsis thaliana. Proc Natl Acad Sci USA. 2007, 104 (2): 672-677.
Article
PubMed
PubMed Central
Google Scholar
Gadjev I, Vanderauwera S, Gechev TS, Laloi C, Minkov IN, Shulaev V, Apel K, Inze D, Mittler R, Van Breusegem F: Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. Plant Physiol. 2006, 141 (2): 436-445.
Article
PubMed
PubMed Central
Google Scholar
op den Camp RGL, Przybyla D, Ochsenbein C, Laloi C, Kim CH, Danon A, Wagner D, Hideg E, Gobel C, Feussner I, et al: Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. Plant Cell. 2003, 15 (10): 2320-2332.
Article
PubMed
PubMed Central
Google Scholar
Jimenez A, Hernandez JA, delRio LA, Sevilla F: Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol. 1997, 114 (1): 275-284.
PubMed
PubMed Central
Google Scholar
Davletova S, Rizhsky L, Liang HJ, Zhong SQ, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R: Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell. 2005, 17 (1): 268-281.
Article
PubMed
PubMed Central
Google Scholar
Moon H, Baek D, Lee B, Prasad DT, Lee SY, Cho MJ, Lim CO, Choi MS, Bahk J, Kim MO, et al: Soybean ascorbate peroxidase suppresses Bax-induced apoptosis in yeast by inhibiting oxygen radical generation. Biochem Biophys Res Commun. 2002, 290 (1): 457-462.
Article
PubMed
Google Scholar
Yoshida S, Tamaoki M, Shikano T, Nakajima N, Ogawa D, Ioki M, Aono M, Kubo A, Kamada H, Inoue Y, et al: Cytosolic dehydroascorbate reductase is important for ozone tolerance in Arabidopsis thaliana. Plant Cell Physiol. 2006, 47 (2): 304-308.
Article
PubMed
Google Scholar
Chung J-S, Zhu J-K, Bressan RA, Hasegawa PM, Shi H: Reactive oxygen species mediate Na+-induced SOS1 mRNA stability in Arabidopsis. Plant J. 2008, 53 (3): 554-565.
Article
PubMed
PubMed Central
Google Scholar
Xiong Y, Contento AL, Bassham DC: Disruption of autophagy results in constitutive oxidative stress in Arabidopsis. Autophagy. 2007, 3 (3): 257-258.
Article
PubMed
Google Scholar
Lichtenthaler HK, Wellburn AR: Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans. 1983, 11: 591-592.
Article
Google Scholar
[http://rsb.info.nih.gov/ij/index.html].
Rao MV, Davis KR: Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. Plant J. 1999, 17 (6): 603-614.
Article
PubMed
Google Scholar
Rook GA, Steele J, Umar S, Dockrell HM: A simple method for the solubilisation of reduced NBT, and its use as a colorimetric assay for activation of human macrophages by gamma-interferon. J Immunol Methods. 1985, 82 (1): 161-167.
Article
PubMed
Google Scholar
Mookerjee A, Basu JM, Majumder S, Chatterjee S, Panda GS, Dutta P, Pal S, Mukherjee P, Efferth T, Roy S, et al: A novel copper complex induces ROS generation in doxorubicin resistant Ehrlich ascitis carcinoma cells and increases activity of antioxidant enzymes in vital organs in vivo. BMC Cancer. 2006, 6: 267
Article
PubMed
PubMed Central
Google Scholar
Kotchoni SO, Kuhns C, Ditzer A, Kirch HH, Bartels D: Over-expression of different aldehyde dehydrogenase genes in Arabidopsis thaliana confers tolerance to abiotic stress and protects plants against lipid peroxidation and oxidative stress. Plant Cell Environ. 2006, 29 (6): 1033-1048.
Article
PubMed
Google Scholar
Beauchamp C, Fridovich I: Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971, 44 (1): 276-287.
Article
PubMed
Google Scholar
Nakano Y, Asada K: Hydrogen-peroxide is scavenged by ascorbate-specific peroxidase in spinach-chloroplasts. Plant Cell Physiol. 1981, 22 (5): 867-880.
Google Scholar
Hossain MA, Asada K: Purification of dehydroascorbate reductase from spinach and its characterization as a thiol enzyme. Plant Cell Physiol. 1984, 25 (1): 85-92.
Google Scholar
Hossain MA, Nakano Y, Asada K: Monodehydroascorbate reductase in spinach-chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen-peroxide. Plant Cell Physiol. 1984, 25 (3): 385-395.
Google Scholar
Smith IK, Vierheller TL, Thorne CA: Assay of glutathione-reductase in crude tissue-homogenates using 5,5'-dithiobis(2-nitrobenzoic acid). Anal Biochem. 1988, 175 (2): 408-413.
Article
PubMed
Google Scholar
Aebi H: Catalase in vitro. Methods Enzymol. 1984, 105: 121-126.
Article
PubMed
Google Scholar
[http://www.ebi.ac.uk/arrayexpress/].
Lurin C, Andres C, Aubourg S, Bellaoui M, Bitton F, Bruyere C, Caboche M, Debast C, Gualberto J, Hoffmann B, et al: Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell. 2004, 16 (8): 2089-2103.
Article
PubMed
PubMed Central
Google Scholar