Wang ML, Barkley NA, Yu JK, Dean RE, Newman ML, Sorrells ME, Pederson G: Transfer of simple sequence repeat (SSR) markers from major cereal crops to minor grass species for germplasm characterization and evaluation. Plant Genetic Resources: characterization and utilization. 2005, 3: 45-57. 10.1079/PGR200461.
Article
Google Scholar
Bothmer R, Jacobsen N, Baden C, Jørgensen RB, Linde-Laursen I: An Ecogeographical Study of the Genus Hordeum. Systematic and Ecogeographic Studies on Crop Genepools. 1995, 7: 1-129.
Google Scholar
Martín A, Martínez C, Rubiales D, Ballesteros J: Tritordeum: triticale's new brother cereal. Triticale: today and tomorrow. Edited by: Guedes-Pinto H, Darvey NC. 1996, 57-72.
Chapter
Google Scholar
Martín A, Martin LM, Cabrera A, Ramirez MC, Giménez MJ, Rubiales D, Hernandez P, Ballesteros J: The potential of Hordeum chilense in breeding Triticeae species. Triticeae III. Edited by: Jaradat AA. 1998, Science Publishers, Enfield, New Hampshire, USA, 377-386.
Google Scholar
Martín AC, Atienza SG, Ramírez MC, Barro F, Martín A: Male fertility restoration of wheat in Hordeum chilense cytoplasm is associated with 6HchS chromosome addition. Australian Journal of Agricultural Research. 2008, 59: 206-213. 10.1071/AR07239.
Article
Google Scholar
Hernandez P, Dorado G, Cabrera A, Laurie DA, Snape JW, Martin A: Rapid verification of wheat-Hordeum introgressions by direct staining of SCAR, STS, and SSR amplicons. Genome. 2002, 45: 198-203. 10.1139/g01-087.
Article
PubMed
Google Scholar
Hernandez P, Rubio MJ, Martin A: Development of RAPD markers in tritordeum and addition lines of Hordeum chilense in Triticum aestivum. Plant Breeding. 1996, 115: 52-56. 10.1111/j.1439-0523.1996.tb00870.x.
Article
Google Scholar
Hernandez P, Martín A, Dorado G: Development of SCARs by direct sequencing of RAPD products: a practical tool for the introgression and marker-assisted selection of wheat. Molecular Breeding. 1999, 5: 245-253. 10.1023/A:1009637928471.
Article
Google Scholar
Gale MD, Devos KM: Comparative genetics in the grasses. Proceedings of the National Academy of Sciences. 1998, 95: 1971-1974. 10.1073/pnas.95.5.1971.
Article
Google Scholar
Hernandez P, Hemmat M, Weeden NF, Dorado G, Martín A: Development and characterization of Hordeum chilense chromosome-specific STS markers suitable for wheat introgression and marker-assisted selection. Theoretical and Applied Genetics. 1999, 98: 721-727. 10.1007/s001220051126.
Article
Google Scholar
Hernandez P, Laurie DA, Martín A, Snape JW: Utility of barley and wheat simple sequence repeat (SSR) markers for genetic analysis of Hordeum chilense and tritordeum. Theoretical and Applied Genetics. 2002, 104: 735-739. 10.1007/s001220100674.
Article
PubMed
Google Scholar
Gupta PK, Varshney RK: The development and use of microsatellite markers for genetics and plant breeding with emphasis on bread wheat. Euphytica. 2000, 113: 163-185. 10.1023/A:1003910819967.
Article
Google Scholar
Varshney RK, Sigmund R, Börner A, Korzun V, Stein N, Sorrells M, Langridge P, Graner A: Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. Plant Science. 2005, 168: 195-202. 10.1016/j.plantsci.2004.08.001.
Article
Google Scholar
Pinto LR, Oliveira KM, Marconi T, Garcia AAF, Ulian EC, de Souza AP: Characterization of novel sugarcane expressed sequence tag microsatellites and their comparison with genomic SSRs. Plant Breeding. 2006, 125: 378-384. 10.1111/j.1439-0523.2006.01227.x.
Article
Google Scholar
Gupta PK, Rustgi S, Sharma S, Singh R, Kumar N, Balyan HS: Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Molecular Genetics and Genomics. 2003, 270: 315-323. 10.1007/s00438-003-0921-4.
Article
PubMed
Google Scholar
Decroocq V, Favé MG, Hagen L, Bordenave L, Decroocq S: Development and transferability of apricot and grape EST microsatellite markers across taxa. Theoretical and Applied Genetics. 2003, 106: 912-922.
PubMed
Google Scholar
Cho YG, Ishii T, Temnykh S, Chen X, Lipovich L, McCouch SR, Park WD, Ayres N, Cartinhour S: Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.). Theoretical and Applied Genetics. 2000, 100: 713-722. 10.1007/s001220051343.
Article
Google Scholar
Boches PS, Bassil NV, Rowland LJ: Microsatellite markers for Vaccinium from EST and genomic libraries. Molecular Ecology Notes. 2005, 5: 657-660. 10.1111/j.1471-8286.2005.01025.x.
Article
Google Scholar
Varshney RK, Graner A, Sorrells ME: Genic microsatellite markers in plants: features and applications. Trends in Biotechnology. 2005, 23: 48-55. 10.1016/j.tibtech.2004.11.005.
Article
PubMed
Google Scholar
Cordeiro GM, Casu R, McIntyre CL, Manners JM, Henry RJ: Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Science. 2001, 160: 1115-1123. 10.1016/S0168-9452(01)00365-X.
Article
PubMed
Google Scholar
Gao L, Tang J, Li H, Jia J: Analysis of microsatellites in major crops assessed by computational and experimental approaches. Molecular Breeding. 2003, 12: 245-261. 10.1023/A:1026346121217.
Article
Google Scholar
Yu JK, La Rota M, Kantety R, Sorrells M: EST derived SSR markers for comparative mapping in wheat and rice. Molecular Genetics and Genomics. 2004, 271: 742-751. 10.1007/s00438-004-1027-3.
Article
PubMed
Google Scholar
Zhang LY, Ravel C, Bernard M, Balfourier F, Leroy P, Feuillet C, Sourdille P: Transferable bread wheat EST-SSRs can be useful for phylogenetic studies among the Triticeae species. Theoretical and Applied Genetics. 2006, 113: 407-418. 10.1007/s00122-006-0304-4.
Article
PubMed
Google Scholar
Thiel T, Michalek W, Varshney RK, Graner A: Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theoretical and Applied Genetics. 2003, 106: 411-422.
PubMed
Google Scholar
Varshney RK, Marcel TC, Ramsay L, Russell J, Roder MS, Stein N, Waugh R, Langridge P, Niks RE, Graner A: A high density barley microsatellite consensus map with 775 SSR loci. Theoretical and Applied Genetics. 2007, 114: 1091-1103. 10.1007/s00122-007-0503-7.
Article
PubMed
Google Scholar
Miller TE, Reader SM, Chapman V: The addition of Hordeum chilense chromosomes to wheat. Induced variability in plant breeding. EUCARPIA Int Symp. 1982
Google Scholar
Kellogg EA: Relationships of cereal crops and other grasses. Proceedings of the National Academy of Sciences of the United States of America. 1998, 95: 2005-2010. 10.1073/pnas.95.5.2005.
Article
PubMed
PubMed Central
Google Scholar
Cabrera A, Friebe B, Jiang J, Gill BS: Characterization of Hordeum chilense Chromosomes by C-Banding and in-Situ Hybridization Using Highly Repeated DNA Probes. Genome. 1995, 38: 435-442.
Article
PubMed
Google Scholar
Varshney RK, Grosse I, Hahnel U, Thiel T, Rudd S, Zhang H, Prasad M, Stein N, Langridge P, Graner A: Genetic mapping and physical mapping (BAC-identification) of EST-derived microsatellite markers in barley (Hordeum vulgare L.). Theoretical and Applied Genetics. 2006, 113: 239-250. 10.1007/s00122-006-0289-z.
Article
PubMed
Google Scholar
Murray MG, Thompson WF: Rapid isolation of high molecular weight plant DNA. Nucleic Acid Research. 1980, 8: 4321-4326. 10.1093/nar/8.19.4321.
Article
Google Scholar
Hernandez P, Dorado G, Prieto P, Giménez MJ, Ramírez MC, Laurie DA, Snape JW, Martín A: A core genetic map of Hordeum chilense and comparisons with maps of barley (Hordeum vulgare) and wheat (Triticum aestivum). Theoretical and Applied Genetics. 2001, 102: 1259-1264. 10.1007/s001220000514.
Article
Google Scholar
Jaccard P: Nouvelles recherches sur la distribution florale. Bulletin de la Société Vaudoise des Sciences Naturelles. 1908, 44: 223-270.
Google Scholar
Felsenstein J: PHYLIP Phylogeny Inference Package version 3.5c. Distributed by the author. 1993, Department of Genetics, University of Washington, Seattle
Google Scholar
Page RDM: Tree View: An application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences. 1996, 12: 357-358.
PubMed
Google Scholar
Mian RM, Saha MC, Hopkins AA, Wang Z: Use of tall fescue EST-SSR markers in phylogenetic analysis of cool-season forage grasses. Genome. 2005, 48: 637-647. 10.1139/g05-029.
Article
PubMed
Google Scholar
Kong Q, Xiang C, Yu Z: Development of EST-SSRs in Cucumis sativus from sequence database. Molecular Ecology Notes. 2006, 6: 1234-1236. 10.1111/j.1471-8286.2006.01500.x.
Article
Google Scholar
Xinquan Y, Peng L, Zongfu H, Zhongfu N, Qixin S: Genetic diversity revealed by genomic-SSR and EST-SSR markers among common wheat, spelt and compactum. Progress in Natural Science. 2005, 15: 24-33. 10.1080/10020070512331341730.
Article
Google Scholar
Liu ZW, Biyashev RM, Maroof MAS: Development of simple sequence repeat DNA markers and their integration into a barley linkage map. Theoretical and Applied Genetics. 1996, 93: 869-876. 10.1007/BF00224088.
Article
PubMed
Google Scholar
Tang J, Gao L, Cao Y, Jia J: Homologous analysis of SSR-ESTs and transferability of wheat SSR-EST markers across barley, rice and maize. Euphytica. 2006, 151: 87-93. 10.1007/s10681-006-9131-6.
Article
Google Scholar
Zhang LY, Bernard M, Leroy P, Feuillet C, Sourdille P: High transferability of bread wheat EST-derived SSRs to other cereals. Theoretical and Applied Genetics. 2005, 111: 677-687. 10.1007/s00122-005-2041-5.
Article
PubMed
Google Scholar
Blattner FR: Multiple intercontinental dispersals shaped the distribution area of Hordeum (Poaceae). New Phytologist. 2006, 169: 603-614. 10.1111/j.1469-8137.2005.01610.x.
Article
PubMed
Google Scholar
Komatsuda T, Tanno K, Salomon B, Bryngelsson T, von Bothmer R: Phylogeny in the genus Hordeum based on nucleotide sequences closely linked to the vrs1 locus (row number of spikelets). Genome. 1999, 42: 973-981. 10.1139/gen-42-5-973.
Article
PubMed
Google Scholar