Brasier CM: The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathol. 2008, 57 (5): 792-808. 10.1111/j.1365-3059.2008.01886.x.
Article
Google Scholar
Hansen EM: Alien forest pathogens: Phytophthora species are changing world forests. Boreal Environ Res. 2008, 13: 33-41.
Google Scholar
Shearer BL, Fairman RG: A stem injection of phosphite protects Banksia species and Eucalyptus marginata from Phytophthora cinnamomi for at least four years. Australas Plant Pathol. 2007, 36 (1): 78-86. 10.1071/AP06085.
Article
CAS
Google Scholar
Hardham AR: Pathogen profile: Phytophthora cinnamomi. Mol Plant Pathol. 2005, 6: 589-604. 10.1111/j.1364-3703.2005.00308.x.
Article
CAS
PubMed
Google Scholar
Akinsanmi OA, Drenth A: Phosphite and metalaxyl rejuvenate macadamia trees in decline caused by Phytophthora cinnamomi. Crop Prot. 2013, 53: 29-36.
Article
CAS
Google Scholar
Scanu BB, Linaldeddu BT, Franceschini A, Anselmi N, Vannini A, Vettraino AM: Occurrence of Phytophthora cinnamomi in cork oak forests in Italy. Forest Pathol. 2013, 43: 340-343. 10.1111/efp.12039.
Article
Google Scholar
Guest D, Grant B: The complex action of phosphonates as antifungal agents. Biol Rev Camb Philos Soc. 1991, 66 (2): 159-187. 10.1111/j.1469-185X.1991.tb01139.x.
Article
Google Scholar
Hardy GESJ, Barrett S, Shearer BL: The future of phosphite as a fungicide to control the soilborne plant pathogen Phytophthora cinnamomi in natural ecosystems. Australas Plant Pathol. 2001, 30 (2): 133-139. 10.1071/AP01012.
Article
Google Scholar
Robert-Seilaniantz A, Grant M, Jones JDG: Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol. 2011, 49 (26): 317-343.
Article
CAS
PubMed
Google Scholar
Pozo MJ, Van Loon LC, Pieterse CMJ: Jasmonates-signals in plant-microbe interactions. J Plant Growth Regul. 2005, 23 (3): 211-222.
Google Scholar
Park JE, Park JY, Kim YS, Staswick PE, Jeon J: GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. J Biol Chem. 2007, 282: 10036-10046. 10.1074/jbc.M610524200.
Article
CAS
PubMed
Google Scholar
Fan J, Hill L, Crooks C, Doerner P, Lamb C: Abscisic acid has a key role in modulating diverse plant-pathogen interactions. Plant Physiol. 2009, 150: 1750-1761. 10.1104/pp.109.137943.
Article
PubMed Central
CAS
PubMed
Google Scholar
De Torres ZM, Bennett MH, Truman WH, Grant MR: Antagonism between salicylic and abscisic acid reflects early host-pathogen conflict and moulds plant defence responses. Plant J. 2009, 59: 375-386. 10.1111/j.1365-313X.2009.03875.x.
Article
Google Scholar
Robert-Seilaniantz A, Maclean D, Jikumaru Y, Hill L, Yamaguchi S: The microRNA miR393 redirects secondary metabolite biosynthesis away from camalexin and towards glucosinolates. Plant J. 2011, 67: 218-231. 10.1111/j.1365-313X.2011.04591.x.
Article
CAS
PubMed
Google Scholar
Lee TM, Tsai PF, Shyu YT, Sheu F: The effects of phosphite on phosphate starvation responses of Ulva lactuca (Ulvales, Chlorophyta). J Phycol. 2005, 41: 975-982. 10.1111/j.1529-8817.2005.00119.x.
Article
CAS
Google Scholar
Ticconi CA, Delatorre CA, Lahner B, Salt DE, Abel S: Arabidopsis pdr2 revealed a phosphate-sensitive checkpoint in root development. Plant J. 2004, 37: 801-814. 10.1111/j.1365-313X.2004.02005.x.
Article
CAS
PubMed
Google Scholar
Li W-F, Perry PJ, Prafulla NN, Schmidt W: Ubiquitin-specific protease 14 (UBP14) is involved in root responses to phosphate deficiency in Arabidopsis. Mol Plant. 2010, 3 (1): 212-223. 10.1093/mp/ssp086.
Article
CAS
PubMed
Google Scholar
Fang Z, Shaob C, Menga Y, Wua P, Chen M: Phosphate signaling in Arabidopsis and Oryza sativa. Plant Sci. 2009, 176 (2): 170-180. 10.1016/j.plantsci.2008.09.007.
Article
CAS
Google Scholar
Rietz S, Dermendjiev G, Oppermannb E, Tafesseb FG, Effendib Y, Holkb A, Parkera JE, Teigec M, Schererb GFE: Roles of Arabidopsis patatin-related phospholipases a in root development are related to auxin responses and phosphate deficiency. Mol Plant. 2010, 3 (3): 524-538. 10.1093/mp/ssp109.
Article
CAS
PubMed
Google Scholar
Lo´pez-Bucio J, Herna´ndez-Abreu E, Sa´nchez-Caldero´n L, Nieto-Jacobo MF, Simpson J, Herrera-Estrella L: Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol. 2002, 129: 244-256. 10.1104/pp.010934.
Article
Google Scholar
Al-Ghazi Y, Muller B, Pinloche S, Tranbarger TJ, Nacry P, Rossignol M, Tardieu F, Doumas P: Temporal response of Arabidopsis root architecture to phosphate starvation: evidence for the involvement of auxin signalling. Plant Cell Environ. 2003, 26: 1053-1066. 10.1046/j.1365-3040.2003.01030.x.
Article
CAS
Google Scholar
Nacry P, Canivenc GV, Muller B, Azmi A, Van Onckelen H, Rossignol M, Doumas P: A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis. Plant Physiol. 2005, 138: 2061-2074. 10.1104/pp.105.060061.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jain A, Poling MD, Karthikeyan AS, Blakeslee JJ, Peer WA, Titapiwatanakun B, Murphy AS, Raghothama KG: Differential effects of sucrose and auxin on localized phosphate deficiency-induced modulation of different traits of root system architecture in Arabidopsis. Plant Physiol. 2007, 144: 232-247. 10.1104/pp.106.092130.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wooward AW, Bartel B: Auxin: regulation, action, and interaction. Ann Bot. 2005, 95: 707-735. 10.1093/aob/mci083.
Article
Google Scholar
Perez-Torres C-A, Lopez-Bucio J, Cruz-Ramırez A, Ibarra-Laclette E, Dharmasiri S, Estelle M, Herrera-Estrella L: Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell. 2008, 20: 3258-3272. 10.1105/tpc.108.058719.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yu H, Moss BL, Jang SS, Prigge M, Klavins E, Nemhauser JL, Estelle M: Mutations in the TIR1 auxin receptor that increase affinity for auxin/Indole-3-Acetic Acid Proteins result in auxin hypersensitivity. Plant Physiol. 2013, 162: 295-303. 10.1104/pp.113.215582.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schere GFE: AUXIN-BINDING-PROTEIN1, the second auxin receptor: what is the significance of a two-receptor concept in plant signal transduction?. J Exp Bot. 2011, 62 (10): 3339-3357. 10.1093/jxb/err033.
Article
Google Scholar
Smalle J, Vierstra RD: The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol. 2004, 55: 555-590. 10.1146/annurev.arplant.55.031903.141801.
Article
CAS
PubMed
Google Scholar
Austin MJ, Muskett P, Kahn K, Feys BJ, Jones JDG, Parker JE: Regulatory role of SGT1 in early R gene-mediated plant defenses. Science. 2077–2080, 2002: 295-
Google Scholar
Gray WM, Muskett PR, Chuang H-W, Parker JE: ArabidopsisSGT1b is required for SCFTIR1-mediated auxin response. Plant Cell. 2003, 15: 1310-1319. 10.1105/tpc.010884.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tor M, Gordon P, Cuzick A, Eulgem T, Sinapidou E, Mert-Türk F, Can C, Dangl JL, Holub EB: Arabidopsis SGT1b is required for defense signaling conferred by several downy mildew resistance genes. Plant Cell. 2002, 14: 993-1003. 10.1105/tpc.001123.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dodds PN, Schwechheimer C: A breakdown in defense signaling. Plant Cell. 2002, 14: 5-8.
Google Scholar
Azevedo C, Sadanandom A, Kitagawa K, Freialdenhoven S, Shirasu K, Schulze-Lefert P: The RAR1 interactor SGT1B, an essential component of R gene-triggered disease resistance. Science. 2073–2076, 2002: 295-
Google Scholar
Schwechheimer C, Serino G, Deng XW: Multiple ubiquitin ligasemediated processes require COP9 signalosome and AXR1 function. Plant Cell. 2002, 14: 2553-2563. 10.1105/tpc.003434.
Article
PubMed Central
CAS
PubMed
Google Scholar
Llorente F, Muskett P, Sanchez-Vallet A, Lopez G, Ramos B, Sanchez-Rodrıguez C, Jorda L, Parker J, Molina A: Repression of the auxin response pathway increases Arabidopsis susceptibility to necrotrophic fungi. Mol Plant. 2008, 1 (3): 496-509. 10.1093/mp/ssn025.
Article
CAS
PubMed
Google Scholar
Rookes JE, Wright ML, Cahill DM: Elucidation of defence responses and signaling pathways induced in Arabidopsis thaliana following challenge with Phytophthora cinnamomi. Physiol Mol Plant Pathol. 2008, 72: 151-161. 10.1016/j.pmpp.2008.08.005.
Article
CAS
Google Scholar
Eshraghi L, Aryamanesh N, Anderson JP, Shearer B, McComb JA, Hardy GESJ, O’Brien PA: A quantitative PCR assay for accurate in planta quantification of the necrotrophic pathogen Phytophthora cinnamomi. Eur J Plant Pathol. 2011, 131: 419-430. 10.1007/s10658-011-9819-x.
Article
CAS
Google Scholar
Rubio V, Linhares F, Solano R, Martin AC, Iglesias J, Leyva A, Paz-Ares J: A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev. 2001, 15: 2122-2133. 10.1101/gad.204401.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sunkar R, Zhu J-K: Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell Environ. 2001–2019, 2004: 16-
Google Scholar
Franco-Zorrilla JM, Gonzalez E, Bustos R, Linhares F, Leyva A, Paz-Ares J: The transcriptional control of plant responses to phosphate limitation. J Exp Bot. 2004, 55: 285-293. 10.1093/jxb/erh009.
Article
CAS
PubMed
Google Scholar
Rouached H, Secco D, Arpat B, Poirier Y: The transcription factor PHR1 plays a key role in the regulation of sulfate shoot-to-root flux upon phosphate starvation in Arabidopsis. BMC Plant Biol. 2011, 11: 1-19. 10.1186/1471-2229-11-1.
Article
Google Scholar
Ribot C, Wang Y, Poirier Y: Expression analyses of three members of the AtPHO1 family reveal differential interactions between signaling pathways involved in phosphate deficiency and the responses to auxin, cytokinin, and abscisic acid. Planta. 2008, 227: 1025-1036. 10.1007/s00425-007-0677-x.
Article
CAS
PubMed
Google Scholar
Chiou TJ: The role of microRNAs in sensing nutrient stress. Plant Cell Environ. 2007, 30 (3): 323-332. 10.1111/j.1365-3040.2007.01643.x.
Article
CAS
PubMed
Google Scholar
Miura K, Rus A, Sharkhuu A, Yokoi S, Karthikeyan AS, Raghothama KG, Baek D, Koo YD, Jin JB, Bressan RA, Yun D-J, Hasegawa PM: The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proc Natl Acad Sci USA. 2005, 102 (21): 7760-7765. 10.1073/pnas.0500778102.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M: Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature. 2001, 414: 271-276. 10.1038/35104500.
Article
CAS
PubMed
Google Scholar
Dharmasiri N, Dharmasiri S, Estelle M: The F-box protein TIR1 is an auxin receptor. Nature. 2005, 435: 441-445. 10.1038/nature03543.
Article
CAS
PubMed
Google Scholar
Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann JS, Jurgens G, Estelle M: Plant development is regulated by a family of auxin receptor F box proteins. Dev Cell. 2005, 9: 109-119. 10.1016/j.devcel.2005.05.014.
Article
CAS
PubMed
Google Scholar
Kepinski S, Leyser O: The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature. 2005, 435: 446-451. 10.1038/nature03542.
Article
CAS
PubMed
Google Scholar
Ramos JA, Zenser N, Leyser O, Callis J: Rapid degradation of auxin/indoleacetic acid proteins requires conserved amino acids of domain II and is proteasome dependent. Plant Cell. 2001, 13: 2349-2360.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fu HY, Doelling JH, Arendt CS: Molecular organization of the 20S proteasome gene family from Arabidopsis thaliana. Genetics. 1998, 149: 677-692.
PubMed Central
CAS
PubMed
Google Scholar
Smalle J, Kurepa J, Yang PZ: The pleiotropic role of the 26S proteasome subunit RPN10 in Arabidopsis growth and development supports a substrate-specific function in abscisic acid signaling. Plant Cell. 2003, 15: 965-980. 10.1105/tpc.009217.
Article
PubMed Central
CAS
PubMed
Google Scholar
Eshraghi L, Anderson JP, Aryamanesh N, McComb JA, Shearer B, Hardy GESJ: Defence signalling pathways involved in plant resistance and phosphite-mediated control of Phytophthora cinnamomi. Plant Mol Biol Rep. 2014, 32: 342-356. 10.1007/s11105-013-0645-5.
Article
CAS
Google Scholar
Eshraghi L, Anderson J, Aryamanesh N, Shearer B, McComb JA, Hardy GESJ, O'Brien PA: Phosphite primed defence responses and enhanced expression of defence genes in Arabidopsis thaliana infected with Phytophthora cinnamomi. Plant Pathol. 2011, 60: 1086-1095. 10.1111/j.1365-3059.2011.02471.x.
Article
CAS
Google Scholar
Ticconi CA, Delatorre CA, Abel S: Attenuation of phosphate starvation responses by phosphite in Arabidopsis. Plant Physiol. 2001, 127 (3): 963-972. 10.1104/pp.010396.
Article
PubMed Central
CAS
PubMed
Google Scholar
Thao HTB, Yamakawa T: Phosphite (phosphorous acid): Fungicide, fertilizer or bio-stimulator?. Soil Sci Plant Nutr. 2009, 55: 228-234. 10.1111/j.1747-0765.2009.00365.x.
Article
CAS
Google Scholar
Nilsson L, Lundmark M, Jensen PE, Nielsen TH: The Arabidopsis transcription factor PHR1 is essential for adaptation to high light and retaining functional photosynthesis during phosphate starvation. Physiol Plant. 2012, 144: 35-47. 10.1111/j.1399-3054.2011.01520.x.
Article
CAS
PubMed
Google Scholar
Delhaize E, Randall PJ: Characterization of a phosphate accumulator mutant of Arabidopsis thaliana. Plant Physiol. 1995, 107: 207-213.
PubMed Central
CAS
PubMed
Google Scholar
Poirier Y, Thoma S, Somerville C, Schiefelbein J: A mutant of Arabidopsis deficient in xylem loading of phosphate1. Plant Physiol. 1991, 97: 1087-1093. 10.1104/pp.97.3.1087.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vanneste S, Friml J: Auxin: a trigger for change in plant development. Cell. 2009, 136: 1005-1016. 10.1016/j.cell.2009.03.001.
Article
CAS
PubMed
Google Scholar
Benjamins R, Scheres B: Auxin: the looping star in plant development. Annu Rev Plant Biol. 2008, 59: 443-465. 10.1146/annurev.arplant.58.032806.103805.
Article
CAS
PubMed
Google Scholar
Hay A, Barkoulas M, Tsiantis M: ASYMMETRIC LEAVES1 and auxin activities converge to repress BREVIPEDICELLUS expression and promote leaf development in Arabidopsis. Development. 2006, 133: 3955-3961. 10.1242/dev.02545.
Article
CAS
PubMed
Google Scholar
Petricka JJ, Benfey PN: Root layers: complex regulation of developmental patterning. Curr Opin Genet Dev. 2008, 18: 354-361. 10.1016/j.gde.2008.05.001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yamada T: The role of auxin in plant-disease development. Annu Rev Phytopathol. 1993, 31: 253-273. 10.1146/annurev.py.31.090193.001345.
Article
CAS
PubMed
Google Scholar
Hagen G, Guilfoyle T: Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol. 2002, 49: 373-385. 10.1023/A:1015207114117.
Article
CAS
PubMed
Google Scholar
Ueda M, Matsui K, Ishiguro S: Arabidopsis RPT2a Encoding the 26S proteasome subunit is required for various aspects of root meristem maintenance, andregulates gametogenesis redundantly with its homolog, RPT2b. Plant Cell Physiol. 2011, 52: 1628-1640. 10.1093/pcp/pcr093.
Article
CAS
PubMed
Google Scholar
Ueda M, Matsui K, Ishiguro S, Sano R, Wada T, Paponov I, Palme K, Okada K: The HALTED ROOT gene encoding the 26S proteasome subunit RPT2a is essential for the maintenance of Arabidopsis meristems. Development. 2004, 131: 2101-2111. 10.1242/dev.01096.
Article
CAS
PubMed
Google Scholar
Gallois JL, Guyon-Debast A, Lecureuil A, Vezon D, Carpentier V, Bonhomme S, Guerche P: The Arabidopsis proteasome RPT5 subunits are essential for gametophyte development and show accession-dependent redundancy. Plant Cell. 2009, 21: 442-459. 10.1105/tpc.108.062372.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sakamoto T, Kamiya T, Sako K: Arabidopsis thaliana 26S proteasome subunits RPT2a and RPT5a are crucial for zinc deficiency-tolerance. Biosci Biotechnol Biochem. 2011, 75: 561-567. 10.1271/bbb.100794.
Article
CAS
PubMed
Google Scholar
Coffey MD, Joseph MC: Effects of phosphorous acid and fosetyl-Al on the life cycle of Phytophthora cinnamomi and Phytophthora citricola. Phytopathology. 1985, 75 (9): 1042-1046. 10.1094/Phyto-75-1042.
Article
CAS
Google Scholar
Jackson TJ, Burgess T, Colquhoun I, Hardy GESJ: Action of the fungicide phosphite on Eucalyptus marginata inoculated with Phytophthora cinnamomi. Plant Pathol. 2000, 49: 147-154. 10.1046/j.1365-3059.2000.00422.x.
Article
CAS
Google Scholar
Daniel R, Guest D: Defence responses induced by potassium phosphonate in Phytophthora palmivora-challenged Arabidopsis thaliana. Physiol Mol Plant Pathol. 2006, 67 (3–5): 194-201.
Google Scholar
Gunning TK, Conlan XA, Parker RM, Dyson GA, Adams MJ, Barnett NW, Cahill DM: Profiling of secondary metabolites in blue lupin inoculated with Phytophthora cinnamomi following phosphite treatment. Funct Plant Biol. 2013, 40 (11): 1089-1097. 10.1071/FP13023.
Article
CAS
Google Scholar
Florencia Machinandiarena M, Candela Lobato M, Laura Feldman M, Raul Daleo G, Balbina Andreu A: Potassium phosphite primes defense responses in potato against Phytophthora infestans. J Plant Physiol. 2012, 169 (14): 1417-1424. 10.1016/j.jplph.2012.05.005.
Article
Google Scholar
Bari R, Pant BD, Stitt M, Scheible WR: PHO2, microRNA399, and PHR1 define a phosphate-signalling pathway in plants. Plant Physiol. 2006, 141 (3): 988-999. 10.1104/pp.106.079707.
Article
PubMed Central
CAS
PubMed
Google Scholar
Carswell MC, Grant BR, Theodorou M, Harris J, Niere J, Plaxton W: The fungicide phosphonate disrupts the phosphate-starvation response in Brassica nigra seedlings. Plant Physiol. 1996, 110: 105-110.
PubMed Central
CAS
PubMed
Google Scholar
Carswell M, Grant B, Plaxton W: Disruption of the phosphate-starvation response of oilseed rape suspension cells by the fungicide phosphonate. Planta. 1997, 203: 67-74. 10.1007/s00050166.
Article
CAS
PubMed
Google Scholar
Linkohr BI, Williamson LC, Fitter AH, Ottoline Leyser HM: Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant J. 2002, 29 (6): 751-760. 10.1046/j.1365-313X.2002.01251.x.
Article
CAS
PubMed
Google Scholar
Williamson L, Ribrioux SP, Fitter AH, Leyser HM: Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol. 2001, 126: 875-882. 10.1104/pp.126.2.875.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bates TR, Lynch JP: Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability. Plant Cell Environ. 1996, 19: 529-538. 10.1111/j.1365-3040.1996.tb00386.x.
Article
CAS
Google Scholar
Gilbert GA, Knight JD, Vance CP, Allan DL: Proteoid root development of phosphorus Deficient lupin is mimicked by auxin and phosphonate. Ann Bot. 2000, 85: 921-928. 10.1006/anbo.2000.1133.
Article
CAS
Google Scholar
Byrt P, Grant B: Some conditions governing zoospore production in axenic cultures of Phytophthora cinnamomi Rands. Aust J Bot. 1979, 27: 103-115. 10.1071/BT9790103.
Article
Google Scholar
Gamborg OL, Miller RA, Ojima K: Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res. 1968, 50: 151-158. 10.1016/0014-4827(68)90403-5.
Article
CAS
PubMed
Google Scholar
Hoagland DR, Arnon DI: The water culture method for growing plants without soil. California Agr Exp Stat Circ. 1938, 347: 461-
Google Scholar
Wiszniewski A, Zhou W, Smith S, Bussell J: Identification of two Arabidopsis genes encoding a peroxisomal oxidoreductase-like protein and an acyl-CoA synthetase-like protein that are required for responses to pro-auxins. Plant Mol Biol. 2009, 69 (5): 503-515. 10.1007/s11103-008-9431-4.
Article
CAS
PubMed
Google Scholar
Tai TH, Dahlbeck D, Clark ET, Gajiwala P, Pasion R, Whalen MC, Stall RE, Staskawicz BJ: Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc Natl Acad Sci USA. 1999, 96 (24): 14153-14158. 10.1073/pnas.96.24.14153.
Article
PubMed Central
CAS
PubMed
Google Scholar
Laby RJ, Kincaid MS, Kim D, Gibson SI: The Arabidopsis sugar-insensitive mutants sis4 and sis5 are defective in abscisic acid synthesis and response. Plant J. 2000, 23 (5): 587-596. 10.1046/j.1365-313x.2000.00833.x.
Article
CAS
PubMed
Google Scholar
Gaude N, Nakamura Y, Scheible WR: Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis. Plant J. 2008, 56: 28-39. 10.1111/j.1365-313X.2008.03582.x.
Article
CAS
PubMed
Google Scholar
Hamburger D, Rezzonico E, Petetot JMC, Somerville C, Poirier Y: Identification and characterization of the Arabidopsis PHO1 gene involved in phosphate loading to the xylem. Plant Cell. 2002, 14 (4): 889-902. 10.1105/tpc.000745.
Article
PubMed Central
CAS
PubMed
Google Scholar
Aung K, Lin SI, Wu CC, Huang YT, Su CL, Chiou TJ: pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a MicroRNA399 target gene. Plant Physiol. 2006, 141 (3): 1000-1011. 10.1104/pp.106.078063.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tan X, Calderon-Villalobos LIA, Sharon M: Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature. 2007, 446: 640-645. 10.1038/nature05731.
Article
CAS
PubMed
Google Scholar
Sonoda Y, Sako K, Maki Y: Regulation of leaf organ size by the Arabidopsis RPT2a 19S proteasome subunit. Plant J. 2009, 60: 68-78. 10.1111/j.1365-313X.2009.03932.x.
Article
CAS
PubMed
Google Scholar
Lin YL, Sung SC, Tsai HL: The defective proteasome but not substrate recognition function Is responsible for the null phenotypes of the Arabidopsis proteasome subunit RPN10. Plant Cell. 2011, 23: 2754-2773. 10.1105/tpc.111.086702.
Article
PubMed Central
CAS
PubMed
Google Scholar