Jones JDG, Dangl JL: The plant immune system. Nature. 2006, 444 (7117): 323-10.1038/nature05286.
Article
CAS
PubMed
Google Scholar
Schwessinger B, Zipfel C: News from the frontline: recent insights into PAMP-triggered immunity in plants. Curr Opin Plant Biol. 2008, 11 (4): 389-10.1016/j.pbi.2008.06.001.
Article
CAS
PubMed
Google Scholar
Stotz H, Waller F, Wang K: Innate immunity in plants: the role ofantimicrobial peptides. In Antimicrobial Peptides and Innate Immunity,Progress in inflammation research. Edited by Hiemstra PS, Zaat SAJ. SpringerBasel; 2013:29–51.
Chapter
Google Scholar
Bari R, Jones JDG: Role of plant hormones in plant defence responses. Plant Mol Biol. 2009, 69 (4): 473-10.1007/s11103-008-9435-0.
Article
CAS
PubMed
Google Scholar
Zeier J: New insights into the regulation of plant immunity by amino acid metabolic pathways. Plant Cell and Environment. 2013, doi:10.1111/pce.12122
Google Scholar
Sønderby IE, Geu-Flores F, Halkier BA: Biosynthesis of glucosinolates–gene discovery and beyond. Trends Plant Sci. 2010, 15 (5): 283-10.1016/j.tplants.2010.02.005.
Article
PubMed
Google Scholar
Liu S, Kandoth PK, Warren SD, Yeckel G, Heinz R, Alden J, Yang C, Jamai A, El-Mellouki T, Juvale PS, et al: A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens. Nature. 2012, 492 (7428): 256-10.1038/nature11651.
Article
CAS
PubMed
Google Scholar
Hwang IS, An SH, Hwang BK: Pepper asparagine synthetase 1 (CaAS1) is required for plant nitrogen assimilation and defense responses to microbial pathogens. Plant J. 2011, 67 (5): 749-762. 10.1111/j.1365-313X.2011.04622.x.
Article
CAS
PubMed
Google Scholar
Van Damme M, Zeilmaker T, Elberse J, Andel A, de Sain-van der Velden M, van den Ackerveken G: Downy mildew resistance in Arabidopsis by mutation of HOMOSERINE KINASE. Plant Cell. 2009, 21 (7): 2179-10.1105/tpc.109.066811.
Article
PubMed Central
CAS
PubMed
Google Scholar
Huibers RP, Loonen AEHM, Gao D, Van den Ackerveken G, Visser RGF, Bai Y: Powdery mildew resistance in tomato by impairment of SlPMR4 and SlDMR1. PLoS ONE. 2013, 8: e67467-10.1371/journal.pone.0067467.
Article
PubMed Central
CAS
PubMed
Google Scholar
Stuttmann J, Hubberten H-M, Rietz S, Kaur J, Muskett P, Guerois R, Bednarek P, Hoefgen R, Parker JE: Perturbation of Arabidopsis amino acid metabolism causes incompatibility with the adapted biotrophic pathogen Hyaloperonospora arabidopsidis. Plant Cell. 2011, 23 (7): 2788-2803. 10.1105/tpc.111.087684.
Article
PubMed Central
CAS
PubMed
Google Scholar
Liu G, Ji Y, Bhuiyan NH, Pilot G, Selvaraj G, Zou J, Wei Y: Amino acid homeostasis modulates salicylic acid–associated redox status and defense responses in Arabidopsis. Plant Cell. 2010, 22 (11): 3845-10.1105/tpc.110.079392.
Article
PubMed Central
CAS
PubMed
Google Scholar
Whipps J, Budge S, Fenlon J: Characteristics and host range of tomato powdery mildew. Plant Pathology. 1998, 47 (1): 36-10.1046/j.1365-3059.1998.00207.x.
Article
Google Scholar
Bai Y, Huang C-C, van der Hulst R, Meijer-Dekens F, Bonnema G, Lindhout P: QTLs for tomato powdery mildew resistance (Oidium lycopersici) in Lycopersicon parviflorum G1. 1601 co-localize with two qualitative powdery mildew resistance genes. Mol Plant Microbe Interact. 2003, 16 (2): 169-176. 10.1094/MPMI.2003.16.2.169.
Article
CAS
PubMed
Google Scholar
Bai Y, van der Hulst R, Bonnema G, Marcel TC, Meijer-Dekens F, Niks RE, Lindhout P: Tomato Defense to Oidium neolycopersici: Dominant Ol Genes Confer Isolate-Dependent Resistance Via a Different Mechanism Than Recessive ol-2. Mol Plant Microbe Interact. 2005, 18 (4): 354-362. 10.1094/MPMI-18-0354.
Article
CAS
PubMed
Google Scholar
Lindhout P, Beek Van Der H, Pet G: Wild Lycopersicon species as sources for resistance to powdery mildew (Oidium lycopersicum): mapping of the resistance gene Ol-1 on chromosome 6 of L. hirsutum. Acta Horticulturae (ISHS). 1994, 376: 387-394.
Article
CAS
Google Scholar
Li C, Bonnema G, Che D, Dong L, Lindhout P, Visser R, Bai Y: Biochemical and molecular mechanisms involved in monogenic resistance responses to tomato powdery mildew. Mol Plant Microbe Interact. 2007, 20 (9): 1161-10.1094/MPMI-20-9-1161.
Article
CAS
PubMed
Google Scholar
Huang C-C, Hoefs Van De Putte PM, GHaanstra Van Der Meer J, Meijer-Dekens F, Lindhout P: Characterization and mapping of resistance to Oidium lycopersicum in two Lycopersicon hirsutum accessions: evidence for close linkage of two Ol-genes on chromosome 6 of tomato. Heredity. 2000, 85 (6): 511-520. 10.1046/j.1365-2540.2000.00770.x.
Article
CAS
PubMed
Google Scholar
Seifi A: Characterization of tomato genes for resistance to Oidiumneolycopersici. PhD thesis. The Netherlands: Plant Breeding Department,Wageningen University; 2011.
Google Scholar
Seifi A, Kaloshian I, Vossen J, Che D, Bhattarai KK, Fan J, Naher Z, Goverse A, Tjallingii WF, Lindhout P: Linked, if not the same, Mi-1 homologues confer resistance to tomato powdery mildew and root-knot nematodes. Mol Plant Microbe Interact. 2011, 24 (4): 441-450. 10.1094/MPMI-06-10-0145.
Article
CAS
PubMed
Google Scholar
Li C, Bai Y, Jacobsen E, Visser R, Lindhout P, Bonnema G: Tomato defense to the powdery mildew fungus: differences in expression of genes in susceptible, monogenic-and polygenic resistance responses are mainly in timing. Plant Mol Biol. 2006, 62 (1–2): 127.
Article
CAS
PubMed
Google Scholar
Pei D, Ma H, Zhang Y, Ma Y, Wang W, Geng H, Wu J, Li C: Virus-induced gene silencing of a putative glutathione S-transferase gene compromised Ol-1-mediated resistance against powdery mildew in tomato. Plant Mol Biol Rep. 2011, 29 (4): 972-978. 10.1007/s11105-011-0331-4.
Article
CAS
Google Scholar
Duggleby RG, Pang SS: Acetohydroxyacid synthase. J Biochem Mol Biol. 2000, 33 (1): 1.
CAS
Google Scholar
McCourt J, Duggleby R: Acetohydroxyacid synthase and its role in the biosynthetic pathway for branched-chain amino acids. Amino Acids. 2006, 31 (2): 173-10.1007/s00726-005-0297-3.
Article
CAS
PubMed
Google Scholar
Duggleby RG, McCourt JA, Guddat LW: Structure and mechanism of inhibition of plant acetohydroxyacid synthase. Plant Physiol Biochem. 2008, 46 (3): 309-10.1016/j.plaphy.2007.12.004.
Article
CAS
PubMed
Google Scholar
Tomato Functional Genomics Database. http://ted.bti.cornell.edu/cgi-bin/TFGD/digital/home.cgi.
Binder S: Branched-chain amino acid metabolism in Arabidopsis thaliana. The Arabidopsis Book. 2010, e0137.
Google Scholar
Chen H, Saksa K, Zhao F, Qiu J, Xiong L: Genetic analysis of pathway regulation for enhancing branched-chain amino acid biosynthesis in plants. Plant J. 2010, 63 (4): 573-10.1111/j.1365-313X.2010.04261.x.
Article
CAS
PubMed
Google Scholar
Chaleff RS, Bascomb NF, Chaleff RS, Bascomb NF: Genetic and biochemical evidence for multiple forms of acetolactate synthase in Nicotiana tabacum. Mol Gen Genet. 1987, 210 (1): 33-38. 10.1007/BF00337755.
Article
CAS
Google Scholar
Scheel D, Casida JE: Sulfonylurea herbicides: Growth inhibition in soybean cell suspension cultures and in bacteria correlated with block in biosynthesis of valine, leucine, or isoleucine. Pestic Biochem Physiol. 1985, 23 (3): 398-10.1016/0048-3575(85)90102-6.
Article
CAS
Google Scholar
Ray TB: Site of action of chlorsulfuron inhibition of valine and isoleucine biosynthesis in plants. Plant Physiol. 1984, 75 (3): 827-10.1104/pp.75.3.827.
Article
PubMed Central
CAS
PubMed
Google Scholar
Royuela M, Arrese-Igor C, Muñoz-Rueda A, Gonzalez-Murua C: In vitro and in vivo effects of chlorsulfuron in sensitive and tolerant plants. J Plant Physiol. 1991, 139 (2): 235-10.1016/S0176-1617(11)80614-0.
Article
CAS
Google Scholar
Höfgen R, Laber B, Schüttke I, Klonus A-K, Streber W, Pohlenz H-D: Repression of acetolactate synthase activity through antisense inhibition (Molecular and biochemical analysis of transgenic potato (Solanum tuberosum L. cv Desiree) plants). Plant Physiol. 1995, 107 (2): 469-477.
PubMed Central
PubMed
Google Scholar
Fakhoury AM, Lightfoot DA: Methods of using plants containing the gdhA gene. Patent. 2013, US8383887.
Google Scholar
Nolte S, Young B, Mungur R, Lightfoot D: The glutamate dehydrogenase gene gdhA increased the resistance of tobacco to glufosinate. Weed Res. 2004, 44 (4): 335-339. 10.1111/j.1365-3180.2004.00411.x.
Article
CAS
Google Scholar
Ameziane R, Bernhard K, Lightfoot D: Expression of the bacterial gdhA gene encoding a NADPH glutamate dehydrogenase in tobacco affects plant growth and development. Plant and Soil. 2000, 221 (1): 47-57. 10.1023/A:1004794000267.
Article
CAS
Google Scholar
Mungur R, Glass A, Goodenow D, Lightfoot DA: Metabolite fingerprinting in tranic Nicotiana tabacum altered by the Escherichia coli glutamate dehydrogenase gene. Journal of Biomedicine and Biotechnology. 2005, 2005 (2): 198-214. 10.1155/JBB.2005.198.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhao J, Williams CC, Last RL: Induction of Arabidopsis tryptophan pathway enzymes and camalexin by amino acid starvation, oxidative stress, and an abiotic elicitor. Plant Cell. 1998, 10 (3): 359.
PubMed Central
CAS
PubMed
Google Scholar
Song JT, Lu H, Greenberg JT: Divergent roles in Arabidopsis thaliana development and defense of two homologous genes, aberrant growth and death2 and AGD2-LIKE DEFENSE RESPONSE PROTEIN1, encoding novel aminotransferases. Plant Cell. 2004, 16 (2): 353-10.1105/tpc.019372.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sembdner G, Atzorn R, Schneider G: Plant hormone conjugation. Plan Mol Biol. 1994, 26 (5): 1459-1481. 10.1007/BF00016485.
Article
CAS
Google Scholar
Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R: (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol. 2009, 5 (5): 344-350. 10.1038/nchembio.161.
Article
CAS
PubMed
Google Scholar
Park J-E, Park J-Y, Kim Y-S, Staswick PE, Jeon J, Yun J, Kim S-Y, Kim J, Lee Y-H, Park C-M: GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. J Biol Chem. 2007, 282 (13): 10036-10.1074/jbc.M610524200.
Article
CAS
PubMed
Google Scholar
Liu Y, Schiff M, Dinesh-Kumar S: Virus-induced gene silencing in tomato. Plant J. 2002, 31 (6): 777-10.1046/j.1365-313X.2002.01394.x.
Article
CAS
PubMed
Google Scholar
Helliwell CA, Wesley SV, Wielopolska AJ, Waterhouse PM: High-throughput vectors for efficient gene silencing in plants. Funct Plant Biol. 2002, 29 (10): 1217-10.1071/FP02033.
Article
CAS
Google Scholar
Hurst CD, Knight A, Bruce IJ: PCR detection of genetically modified soya and maize in foodstuffs. Mol Breed. 1999, 5 (6): 579-10.1023/A:1009654623025.
Article
CAS
Google Scholar
Løvdal T, Lillo C: Reference gene selection for quantitative real-time PCR normalization in tomato subjected to nitrogen, cold, and light stress. Anal Biochem. 2009, 387 (2): 238-10.1016/j.ab.2009.01.024.
Article
PubMed
Google Scholar
Livak KJ, Schmittgen TD: Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2 - ΔΔCT Method. Methods. 2001, 25 (4): 402-408. 10.1006/meth.2001.1262.
Article
CAS
PubMed
Google Scholar
Pallant J: SPSS survival manual: A step by step guide to data analysis using SPSS (4th edition). Australia: Allen & Unwin; 2011.
Google Scholar