Li FQ, Ueda H, Hirose S: Mediators of activation of fushi tarazu gene transcription by BmFTZ-F1. Mol Cell Biol. 1994, 14: 3013-3021.
Article
PubMed Central
CAS
PubMed
Google Scholar
Roeder RG: The complexities of eukaryotic transcription initiation: regulation of preinitiation complex assembly. Trends Biochem Sci. 1991, 16: 402-408.
Article
CAS
PubMed
Google Scholar
Takemaru K, Harashima S, Ueda H, Hirose S: Yeast co-activator MBF1 mediates GCN4-dependent transcriptional activation. Mol Cell Biol. 1998, 18: 4971-4976.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jindra M, Gaziova I, Uhlirova M, Okabe M, Hiromi Y, Hirose S: Coactivator MBF1 preserves the redox-dependent AP-1 activity during oxidative stress in Drosophila. EMBO J. 2004, 23: 3538-3547. 10.1038/sj.emboj.7600356.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tsuda K, Tsuji T, Hirose S, Yamazaki K: Three Arabidopsis MBF1 homologs with distinct expression profiles play roles as transcriptional co-activators. Plant Cell Physiol. 2004, 45: 225-231. 10.1093/pcp/pch017.
Article
CAS
PubMed
Google Scholar
Hommel M, Khalil-Ahmad Q, Jaimes-Miranda F, Mila I, Pouzet C, Latché A, Pech JC, Bouzayen M, Regad F: Over-expression of a chimeric gene of the transcriptional co-activator MBF1 fused to the EAR repressor motif causes developmental alteration in Arabidopsis and tomato. Plant Sci. 2008, 175: 168-177. 10.1016/j.plantsci.2008.01.019.
Article
CAS
Google Scholar
Arce DP, Tonón C, Zanetti ME, Godoy AV, Hirose S, Casalongué CA: The potato transcriptional co-activator StMBF1 is up-regulated in response to oxidative stress and interacts with the TATA-box binding protein. J Biochem Mol Biol. 2006, 39 (4): 355-60. 10.5483/BMBRep.2006.39.4.355.
Article
CAS
PubMed
Google Scholar
Godoy AV, Zanetti ME, San Segundo B, Casalongue CA: Identification of a putative Solanum tuberosum transcriptional coactivator up-regulated in potato tubers by Fusarium solani f. sp. eumartii infection and wounding. Physiol Plant. 2001, 112: 217-222. 10.1034/j.1399-3054.2001.1120210.x.
Article
CAS
PubMed
Google Scholar
Suzuki N, Rizhsky L, Liang H, Shuman J, Shulaev V, Mittler R: Enhanced tolerance to environmental stress in transgenic plants expressing the transcriptional co-activator multiprotein bridging factor 1c. Plant Physiol. 2005, 139: 1313-1322. 10.1104/pp.105.070110.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kim MJ, Lim GH, Kim ES, Ko CB, Yang KY, Jeong JA, Lee MC, Kim CS: Abiotic and biotic stress tolerance in Arabidopsis overexpressing the multiprotein bridging factor 1a (MBF1a) transcriptional coactivator gene. Biochem Biophys Res Commun. 2007, 354 (2): 440-446. 10.1016/j.bbrc.2006.12.212.
Article
CAS
PubMed
Google Scholar
Mateos RM, Bonilla-Valverde D, del Rio LA, Palma JM, Corpas FJ: NADP-dehydrogenases from pepper fruits: effect of maturation. Physiol Plantarum. 2008, 135 (2): 130-139.
Article
Google Scholar
Nguyen HT, Leipner J, Stamp P, Guerra-Peraza O: Low temperature stress in maize (Zea mays L.) induces genes involved in photosynthesis and signal transduction as studied by suppression subtractive hybridization. Plant Physiol Biochem. 2009, 47: 116-122. 10.1016/j.plaphy.2008.10.010.
Article
PubMed
Google Scholar
Korkmaz A, Korkmaz Y, Demirkıran AR: Enhancing chilling stress tolerance of pepper seedlings by exogenous application of 5-aminolevulinic acid. Environ Exp Bot. 2010, 67: 495-501. 10.1016/j.envexpbot.2009.07.009.
Article
CAS
Google Scholar
Airaki M, Leterrier M, Mateos RM, Valderrama R, Chaki M, Barroso JB, LA D r, Palma JM, Corpas FJ: Metabolism of reactive oxygen species and reactive nitrogen species in pepper (Capsicum annuum L.) plants under low temperature stress. Plant Cell Environ. 2012, 35: 281-295. 10.1111/j.1365-3040.2011.02310.x.
Article
CAS
PubMed
Google Scholar
Pressman E, Shaked R, Firon N: Exposing pepper plants to high day temperatures prevents the adverse low night temperature symptoms. Physiol Plantarum. 2006, 126: 618-626.
CAS
Google Scholar
Guo WL, Chen RG, Gong ZH, Yin YX, Ahmedand SS, He YM: Exogenous abscisic acid increases antioxidant enzymes and related gene expression in pepper (Capsicum annuum) leaves subjected to chilling stress. Genet Mol Res. 2012, 11 (4): 4063-4080. 10.4238/2012.September.10.5.
Article
CAS
PubMed
Google Scholar
Guo WL, Chen RG, Gong ZH, Yin YX, Li DW: Suppression subtractive hybridization analysis of genes regulated by application of exogenous abscisic acid in pepper plant (Capsicum annuum L.) leaves under chilling stress. PLoS One. 2013, 8 (6): e66667-10.1371/journal.pone.0066667. doi:10.1371/journal. pone.0066667
Article
PubMed Central
CAS
PubMed
Google Scholar
Rizhsky I, Liang H, Mittler R: The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol. 2002, 130: 1143-1151. 10.1104/pp.006858.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tsuda K, Yamazaki K: Structure and expression analysis of three subtypes of Arabidopsis MBF1 genes. Biochim Biophys Acta. 2004, 1680: 1-10. 10.1016/j.bbaexp.2004.08.004.
Article
CAS
PubMed
Google Scholar
Yamaguchi-Shinozaki K, Shinozaki K: The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana. Mol Gen Genet. 1993, 238: 17-25.
CAS
PubMed
Google Scholar
Yamaguchi-Shinozaki K, Shinozaki K: A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell. 1994, 6: 251-264. 10.1105/tpc.6.2.251.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K: ERD15, a cDNA for a dehydration-induced gene from Arabidopsis thaliana. Plant Physiol. 1994, 106: 1707-10.1104/pp.106.4.1707.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cheong YH, Sung SJ, Kim BG, Pandey GK, Cho JS, Kim KN, Luan S: Constitutive overexpression of the calcium sensor CBL5 confers osmotic or drought stress tolerance in Arabidopsis. Mol Cells. 2010, 29: 159-165. 10.1007/s10059-010-0025-z.
Article
CAS
PubMed
Google Scholar
Kim KN, Cheong YH, Grant JJ, Pandey GK, Luan S: CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell. 2003, 15: 411-423. 10.1105/tpc.006858.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pandey GK, Cheong YH, Kim KN, Grant JJ, Li L, Hung W, D’Angelo C, Weinl S, Kudla J, Luan S: The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis. Plant Cell. 2004, 16: 1912-1924. 10.1105/tpc.021311.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pandey GK, Grant JJ, Cheong YH, Kim BG, Li L, Luan S: ABR1, an APETALA2-domain transcription factor that functions as a repressor of ABA response in Arabidopsis. Plant Physiol. 2005, 139: 1185-1193. 10.1104/pp.105.066324.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tojo T, Tsuda K, Yoshizumi T, Ikeda A, Yamaguchi J, Matsui M, Yamazaki K: Arabidopsis MBF1s control leaf cell cycle and its expansion. Plant Cell Physiol. 2009, 50: 254-64.
Article
CAS
PubMed
Google Scholar
Arce DP, Godoy AV, Tsuda K, Yamazaki K, Valle EM, Iglesias MJ, Mauro MFD, Casalongué CA: The analysis of an Arabidopsis triple knock-down mutant reveals functions for MBF1genes under oxidative stress conditions. J Plant Physiol. 2010, 167: 194-200. 10.1016/j.jplph.2009.09.003.
Article
CAS
PubMed
Google Scholar
Mauro MFD, Iglesias MJ, Arce DP, Valle EM, Arnold RB, Tsuda K, Yamazaki K, Casalongué CA, Godoy AV: MBF1s regulate ABA-dependent germination of Arabidopsis seeds. Plant Signal Behav. 2012, 7 (2): 188-192. 10.4161/psb.18843.
Article
PubMed Central
PubMed
Google Scholar
Bewley JD: Seed germination and dormancy. Plant Cell. 1997, 9: 1055-1066. 10.1105/tpc.9.7.1055.
Article
PubMed Central
CAS
PubMed
Google Scholar
Beaudoin N, Serizet C, Gosti F, Giraudat J: Interactions between abscisic acid and ethylene signaling cascades. Plant Cell. 2000, 12 (7): 1103-1115. 10.1105/tpc.12.7.1103.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cheng WH, Chiang MH, Hwang SG, Lin PC: Antagonism between abscisic acid and ethylene in Arabidopsis acts in parallel with the reciprocal regulation of their metabolism and signaling pathways. Plant Mol Biol. 2009, 71: 61-80. 10.1007/s11103-009-9509-7.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kucera B, Cohn MA, Leubner-Metzger G: Plant hormone interactions during seed dormancy release and germination. Seed Sci Res. 2005, 15: 281-307. 10.1079/SSR2005218.
Article
CAS
Google Scholar
Zhu W, Lu MH, Gong ZH, Chen RG: Cloning and expression of a small heat shock protein gene CaHSP24 from pepper under abiotic stress. Afr J Biotechnol. 2011, 10 (25): 4968-4976.
CAS
Google Scholar
Bjellqvist B, Hughes GJ, Pasquali C, Paquet N, Ravier F, Sanchez JC, Frutiger S, Hochstrasser D: The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. Electrophoresis. 1993, 14: 1023-1031. 10.1002/elps.11501401163.
Article
CAS
PubMed
Google Scholar
Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22: 4673-4680. 10.1093/nar/22.22.4673.
Article
PubMed Central
CAS
PubMed
Google Scholar
Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25: 3389-3402. 10.1093/nar/25.17.3389.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ahmed SS, Gong ZH, Ji JJ, Yin YX, Xiao HJ, Khan MA, Rehman A, Ahmad I: Construction of the intermediate vector pVBG2307 by incorporating vital elements of expression vectors pBI121 and pBI221. Genet Mol Res. 2012, 11 (3): 3091-3104. 10.4238/2012.August.31.7.
Article
CAS
PubMed
Google Scholar
Clough SJ, Andrew FB: Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998, 16 (6): 735-743. 10.1046/j.1365-313x.1998.00343.x.
Article
CAS
PubMed
Google Scholar
Lee S, Seo PJ, Lee HJ, Park CM: A NAC transcription factor NTL4 promotes reactive oxygen species production during drought-induced leaf senescence in Arabidopsis. Plant J. 2012, 70: 831-844. 10.1111/j.1365-313X.2012.04932.x.
Article
CAS
PubMed
Google Scholar
Gutierrez L, Mauriat M, Gue’nin S, Pelloux J, Lefebvre JF, Louvet R, Rusterucci C, Moritz T, Guerineau F, Bellini C, Van Wuytswinkel O: The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnol J. 2008, 6: 609-618. 10.1111/j.1467-7652.2008.00346.x.
Article
CAS
PubMed
Google Scholar