Rashotte AM, Chae HS, Maxwell BB, Kieber JJ: The interaction of cytokinin with other signals. Physiol Plant. 2005, 123 (2): 184-194. 10.1111/j.1399-3054.2005.00445.x.
Article
CAS
Google Scholar
Rolland F, Moore B, Sheen J: Sugar sensing and signaling in plants. Plant Cell. 2002, 14 (suppl 1): S185-S205.
PubMed
CAS
PubMed Central
Google Scholar
Teale WD, Ditengou FA, Dovzhenko AD, Li X, Molendijk AM, Ruperti B, Paponov I, Palme K: Auxin as a model for the integration of hormonal signal processing and transduction. Mol Plant. 2008, 1 (2): 229-237. 10.1093/mp/ssn006.
Article
PubMed
CAS
Google Scholar
Weiss D, Ori N: Mechanisms of cross talk between gibberellin and other hormones. Plant Physiol. 2007, 144 (3): 1240-1246. 10.1104/pp.107.100370.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zhang S, Wei Y, Lu Y, Wang X: Mechanisms of brassinosteroids interacting with multiple hormones. Plant Signal Behav. 2009, 4 (12): 1117-1120. 10.4161/psb.4.12.9903.
Article
PubMed
CAS
PubMed Central
Google Scholar
Böttcher C, Davies C: Hormonal control of grape berry development and ripening. The Biochemistry of the Grape Berry, vol. 1. Edited by: Gerós H, Chaves MM, Delrot S. 2012, Sharjah: Bentham Science, 194-217.
Google Scholar
Vendrell M, Palomer X: Hormonal control of fruit ripening in climacteric fruit. Acta Hortic. 1998, 463: 325-334.
Article
Google Scholar
Tucker GA: Introduction. Biochemistry of Fruit Ripening. Edited by: Seymour GB, Taylor JE, Tucker GA. London: Chapman and Hall; 1993, 1-51.
Chapter
Google Scholar
Iannetta PPM, Laarhoven L-J, Medina-Escobar N, James EK, McManus MT, Davies HV, Harren FJM: Ethylene and carbon dioxide production by developing strawberries show a correlative pattern that is indicative of ripening climacteric fruit. Physiol Plant. 2006, 127 (2): 247-259. 10.1111/j.1399-3054.2006.00656.x.
Article
CAS
Google Scholar
Wang H, Huang H, Huang X: Differential effects of abscisic acid and ethylene on the fruit maturation of Litchi chinensis Sonn. Plant Growth Regul. 2007, 52 (3): 189-198. 10.1007/s10725-007-9189-8.
Article
CAS
Google Scholar
Alleweldt G, Koch R: Ethylene content in ripening grape berries. Vitis. 1977, 16: 263-271.
CAS
Google Scholar
Chervin C, El-Kereamy A, Roustan J-P, Latché A, Lamon J, Bouzayen M: Ethylene seems required for the berry development and ripening in grape, a non-climacteric fruit. Plant Sci. 2004, 167 (6): 1301-1305. 10.1016/j.plantsci.2004.06.026.
Article
CAS
Google Scholar
Düring H, Alleweldt G, Koch R: Studies on hormonal control of ripening in berries and grape vines. Acta Hortic. 1978, 80: 397-405.
Article
Google Scholar
Pilati S, Perazzolli M, Malossini A, Cestaro A, Demattè L, Fontana P, Dal Ri A, Viola R, Velasco R, Moser C: Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at vèraison. BMC Genomics. 2007, 8 (1): 428. 10.1186/1471-2164-8-428.
Article
PubMed
PubMed Central
Google Scholar
Böttcher C, Harvey KE, Boss PK, Davies C: Ripening of grape berries can be advanced or delayed by reagents that either reduce or increase ethylene levels. Funct Plant Biol. 2013, 40 (6): 566-581. 10.1071/FP12347.
Article
Google Scholar
Coombe BG, Hale CR: The hormone content of ripening grape berries and the effects of growth substance treatments. Plant Physiol. 1973, 51 (4): 629-634. 10.1104/pp.51.4.629.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hale CR, Coombe BG, Hawker JS: Effects of ethylene and 2-chloroethylphosphonic acid on the ripening of grapes. Plant Physiol. 1970, 45 (5): 620-623. 10.1104/pp.45.5.620.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ban T, Ishimaru M, Kobayashi S, Shiozaki S, Goto-Yamamoto N, Horiuchi S: Abscisic acid and 2,4-dichlorophenoxyacetic acid affect the expression of anthocyanin biosynthetic pathway genes in ‘Kyoho’ grape berries. J Hortic Sci Biotechnol. 2003, 78: 586-589.
CAS
Google Scholar
Böttcher C, Boss PK, Davies C: Acyl substrate preferences of an IAA-amido synthetase account for variations in grape (Vitis vinifera L.) berry ripening caused by different auxinic compounds indicating the importance of auxin conjugation in plant development. J Exp Bot. 2011, 62 (12): 4267-4280. 10.1093/jxb/err134.
Article
PubMed
PubMed Central
Google Scholar
Böttcher C, Harvey K, Forde CG, Boss PK, Davies C: Auxin treatment of pre-veraison grape (Vitis vinifera L.) berries both delays ripening and increases the synchronicity of sugar accumulation. Aust J Grape Wine Res. 2011, 17 (1): 1-8. 10.1111/j.1755-0238.2010.00110.x.
Article
Google Scholar
Böttcher C, Boss PK, Davies C: Delaying Riesling grape berry ripening with a synthetic auxin affects malic acid metabolism and sugar accumulation, and alters wine sensory characters. Funct Plant Biol. 2012, 39 (9): 745-753. 10.1071/FP12132.
Article
Google Scholar
Davies C, Boss PK, Robinson SP: Treatment of grape berries, a nonclimacteric fruit with a synthetic auxin, retards ripening and aters the expression of developmentally regulated genes. Plant Physiol. 1997, 115 (3): 1155-1161.
PubMed
CAS
PubMed Central
Google Scholar
Hale CR: Growth and senescence of the grape berry. Aust J Agric Res. 1968, 19 (6): 939-945. 10.1071/AR9680939.
Article
Google Scholar
Buta JG, Spaulding DW: Changes in indole-3-acetic acid and abscisic acid levels during tomato (Lycopersicon esculentum Mill.) fruit development and ripening. J Plant Growth Regul. 1994, 13 (3): 163-166. 10.1007/BF00196382.
Article
CAS
Google Scholar
Mapelli S, Frova C, Torti G, Soressi GP: Relationship between set, development and activities of growth regulators in tomato fruits. Plant Cell Physiol. 1978, 19 (7): 1281-1288.
CAS
Google Scholar
Purgatto E, Oliveira do Nascimento JR, Lajolo FM, Cordenunsi BR: The onset of starch degradation during banana ripening is concomitant to changes in the content of free and conjugated forms of indole-3-acetic acid. J Plant Physiol. 2002, 159 (10): 1105-1111. 10.1078/0176-1617-00875.
Article
CAS
Google Scholar
Archbold DD, Dennis FG: Quantification of free ABA and free and conjugated IAA in strawberry achene and receptacle tissue during fruit development. J Am Soc Hortic Sci. 1984, 109: 330-335.
CAS
Google Scholar
Symons GM, Chua Y-J, Ross JJ, Quittenden LJ, Davies NW, Reid JB: Hormonal changes during non-climacteric ripening in strawberry. J Exp Bot. 2012, 63 (13): 4741-4750. 10.1093/jxb/ers147.
Article
PubMed
CAS
PubMed Central
Google Scholar
Böttcher C, Keyzers RA, Boss PK, Davies C: Sequestration of auxin by the indole-3-acetic acid-amido synthetase GH3-1 in grape berry (Vitis vinifera L.) and the proposed role of auxin conjugation during ripening. J Exp Bot. 2010, 61 (13): 3615-3625. 10.1093/jxb/erq174.
Article
PubMed
Google Scholar
Cawthon DL, Morris JR: Relationship of seed number and maturity to berry development, fruit maturation, hormonal changes, and uneven ripening of ‘Concord’ (Vitis labrusca L.) grapes. J Am Soc Hortic Sci. 1982, 107 (6): 1097-1104.
CAS
Google Scholar
Inaba A, Ishida M, Sobajima Y: Changes in endogenous hormone concentrations during berry development in relation to the ripening of Delaware grapes. J Jpn Soc Hortic Sci. 1976, 45 (3): 245-252. 10.2503/jjshs.45.245.
Article
Google Scholar
Zhang X, Luo G, Wang R, Wang J, Himelrick DG: Growth and developmental responses of seeded and seedless grape berries to shoot girdling. J Am Soc Hortic Sci. 2003, 128 (3): 316-323.
Google Scholar
Frenkel C: Involvement of peroxidase and indole-3-acetic acid oxidase isozymes from pear, tomato, and blueberry fruit in ripening. Plant Physiol. 1972, 49 (5): 757-763. 10.1104/pp.49.5.757.
Article
PubMed
CAS
PubMed Central
Google Scholar
Dunlap JR, Slovin JP, Cohen JD: Indole-3-acetic acid, ethylene, and abscisic acid metabolism in developing muskmelon (Cucumis melo L.) fruit. Plant Growth Regul. 1996, 19 (1): 45-54. 10.1007/BF00024401.
Article
CAS
Google Scholar
Östin A, Kowalyczk M, Bhalerao RP, Sandberg G: Metabolism of indole-3-acetic acid in Arabidopsis. Plant Physiol. 1998, 118 (1): 285-296. 10.1104/pp.118.1.285.
Article
PubMed
PubMed Central
Google Scholar
Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W: Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell. 2005, 17 (2): 616-627. 10.1105/tpc.104.026690.
Article
PubMed
CAS
PubMed Central
Google Scholar
Morgan PW, Hall WC: Effect of 2,4-dichlorophenoxyacetic acid on the production of ethylene by cotton and grain sorghum. Physiol Plant. 1962, 15 (3): 420-427. 10.1111/j.1399-3054.1962.tb08045.x.
Article
CAS
Google Scholar
Yoshii H, Imaseki H: Regulation of auxin-induced ethylene biosynthesis. Repression of inductive formation of 1-aminocyclopropane-1-carboxylate synthase by ethylene. Plant Cell Physiol. 1982, 23 (4): 639-649.
CAS
Google Scholar
Abel S, Nguyen MD, Chow W, Theologis A: ASC4, a primary indoleacetic acid-responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis thaliana: Structural characterization, expression in Escherichia coli, and expression characteristics in response to auxin. J Biol Chem. 1995, 270 (32): 19093-19099. 10.1074/jbc.270.32.19093.
Article
PubMed
CAS
Google Scholar
Raghavan C, Ong EK, Dalling MJ, Stevenson TW: Regulation of genes associated with auxin, ethylene and ABA pathways by 2,4-dichlorophenoxyacetic acid in Arabidopsis. Funct Integr Genomics. 2006, 6 (1): 60-70. 10.1007/s10142-005-0012-1.
Article
PubMed
CAS
Google Scholar
Tsuchisaka A, Theologis A: Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane-1-carboxylate synthase gene family members. Plant Physiol. 2004, 136: 2982-3000. 10.1104/pp.104.049999.
Article
PubMed
CAS
PubMed Central
Google Scholar
Li J, Yuan R: NAA and ethylene regulate expression of genes related to ethylene biosynthesis, perception, and cell wall degradation during fruit abscission and ripening in ‘Delicious’ apples. J Plant Growth Regul. 2008, 27 (3): 283-295. 10.1007/s00344-008-9055-6.
Article
CAS
Google Scholar
Kondo S, Isuzugawa K, Kobayashi S, Mattheis J: Aroma volatile emission and expression of 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC oxidase genes in pears treated with 2,4-DP. Postharvest Biol Technol. 2006, 41 (1): 22-31. 10.1016/j.postharvbio.2006.03.004.
Article
CAS
Google Scholar
Trainotti L, Tadiello A, Casadoro G: The involvement of auxin in the ripening of climacteric fruits comes of age: The hormone plays a role of its own and has an intense interplay with ethylene in ripening peaches. J Exp Bot. 2007, 58 (12): 3299-3308. 10.1093/jxb/erm178.
Article
PubMed
CAS
Google Scholar
Ziliotto F, Corso M, Rizzini FM, Rasori A, Botton A, Bonghi C: Grape berry ripening delay induced by a pre-véraison NAA treatment is paralleled by a shift in the expression pattern of auxin- and ethylene-related genes. BMC Plant Biol. 2012, 12 (1): 185. 10.1186/1471-2229-12-185.
Article
PubMed
CAS
PubMed Central
Google Scholar
Agustí M, Gariglio N, Castillo A, Juan M, Almela V, Martínez-Fuentes A, Mesejo C: Effect of the synthetic auxin 2,4-DP on fruit development of loquat. Plant Growth Regul. 2003, 41 (2): 129-132. 10.1023/A:1027333123649.
Article
Google Scholar
Agustí M, Juan M, Mesejo C, Martínez-Fuentes A, Almela V: Persimmon fruit size and climacteric encouraged by 3,5,6-trichloro-2-pyridyloxyacetic acid. J Hortic Sci Biotechnol. 2004, 79 (2): 171-174.
Google Scholar
Kondo S, Settsu K, Jitratham A: How application times of 2,4-DP influence the ripening capacity of ‘La France’ pears. HortScience. 2004, 39 (1): 101-104.
CAS
Google Scholar
Ohmiya A: Effects of auxin on growth and ripening of mesocarp discs of peach fruit. Sci Hortic. 2000, 84 (3–4): 309-319.
Article
CAS
Google Scholar
Yuan R, Carbaugh DH: Effects of NAA, AVG, and 1-MCP on ethylene biosynthesis, preharvest fruit drop, fruit maturity, and quality of ‘Golden Supreme’ and ‘Golden Delicious’ apples. HortScience. 2007, 42 (1): 101-105.
CAS
Google Scholar
Růžička K, Ljung K, Vanneste S, Podhorská R, Beeckman T, Friml J, Benková E: Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell. 2007, 19 (7): 2197-2212. 10.1105/tpc.107.052126.
Article
PubMed
PubMed Central
Google Scholar
Swarup R, Perry P, Hagenbeek D, Van Der Straeten D, Beemster GTS, Sandberg G, Bhalerao R, Ljung K, Bennett MJ: Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell. 2007, 19 (7): 2186-2196. 10.1105/tpc.107.052100.
Article
PubMed
CAS
PubMed Central
Google Scholar
Stepanova AN, Hoyt JM, Hamilton AA, Alonso JM: A link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. Plant Cell. 2005, 17 (8): 2230-2242. 10.1105/tpc.105.033365.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zhong GY, Burns JK: Profiling ethylene-regulated gene expression in Arabidopsis thaliana by microarray analysis. Plant Mol Biol. 2003, 53 (6): 117-131.
Article
PubMed
CAS
Google Scholar
Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, Natsume M, Hanada A, Yaeno T, Shirasu K, Yao H, et al: The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci. 2011, 108 (45): 18512-18517. 10.1073/pnas.1108434108.
Article
PubMed
CAS
PubMed Central
Google Scholar
Stepanova AN, Yun J, Robles LM, Novak O, He W, Guo H, Ljung K, Alonso JM: The Arabidopsis YUCCA1 flavin monooxygenase functions in the indole-3-pyruvic acid branch of auxin biosynthesis. Plant Cell. 2011, 23 (11): 3961-3973. 10.1105/tpc.111.088047.
Article
PubMed
CAS
PubMed Central
Google Scholar
Won C, Shen X, Mashiguchi K, Zheng Z, Dai X, Cheng Y, Kasahara H, Kamiya Y, Chory J, Zhao Y: Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis. Proc Natl Acad Sci. 2011, 108 (45): 18518-18523. 10.1073/pnas.1108436108.
Article
PubMed
CAS
PubMed Central
Google Scholar
Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie D-Y, Doležal K, Schlereth A, Jürgens G, Alonso JM: TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell. 2008, 133 (1): 177-191. 10.1016/j.cell.2008.01.047.
Article
PubMed
CAS
Google Scholar
Tao Y, Ferrer J-L, Ljung K, Pojer F, Hong F, Long JA, Li L, Moreno JE, Bowman ME, Ivans LJ, et al: Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell. 2008, 133 (1): 164-176. 10.1016/j.cell.2008.01.049.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J: A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science. 2001, 291 (5502): 306-309. 10.1126/science.291.5502.306.
Article
PubMed
CAS
Google Scholar
Phillips KA, Skirpan AL, Liu X, Christensen A, Slewinski TL, Hudson C, Barazesh S, Cohen JD, Malcomber S, McSteen P: vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in Maize. Plant Cell. 2011, 23 (2): 550-566. 10.1105/tpc.110.075267.
Article
PubMed
CAS
PubMed Central
Google Scholar
Muday GK, Rahman A, Binder BM: Auxin and ethylene: collaborators or competitors?. Trends Plant Sci. 2012, 17 (4): 181-195. 10.1016/j.tplants.2012.02.001.
Article
PubMed
CAS
Google Scholar
Stepanova AN, Alonso JM: Ethylene signaling and response: where different regulatory modules meet. Curr Opin Plant Biol. 2009, 12 (5): 548-555. 10.1016/j.pbi.2009.07.009.
Article
PubMed
CAS
Google Scholar
Peat TS, Böttcher C, Newman J, Lucent D, Cowieson N, Davies C: Crystal structure of an indole-3-acetic acid amido synthetase from grapevine involved in auxin homeostasis. Plant Cell. 2012, 24 (11): 4525-4538. 10.1105/tpc.112.102921.
Article
PubMed
CAS
PubMed Central
Google Scholar
Binder BM, O’Malley RC, Wang W, Moore JM, Parks BM, Spalding EP, Bleecker AB: Arabidopsis seedling growth response and recovery to ethylene. A kinetic analysis. Plant Physiol. 2004, 136 (2): 2913-2920. 10.1104/pp.104.050369.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ireland HS, Yao J-L, Tomes S, Sutherland PW, Nieuwenhuizen N, Gunaseelan K, Winz RA, David KM, Schaffer RJ: Apple SEPALLATA1/2-like genes control fruit flesh development and ripening. Plant J. 2013, 73 (6): 1044-1056. 10.1111/tpj.12094.
Article
PubMed
CAS
Google Scholar
Boller T, Herner RC, Kende H: Assay for and enzymatic formation of an ethylene precursor, 1-aminocyclopropane-1-carboxylic acid. Planta. 1979, 145 (3): 293-303. 10.1007/BF00454455.
Article
PubMed
CAS
Google Scholar
Yamagami T, Tsuchisaka A, Yamada K, Haddon WF, Harden LA, Theologis A: Biochemical diversity among the 1-amino-cyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. J Biol Chem. 2003, 278 (49): 49102-49112. 10.1074/jbc.M308297200.
Article
PubMed
CAS
Google Scholar
Adams DO, Yang SF: Ethylene biosynthesis: Identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc Natl Acad Sci. 1979, 76 (1): 170-174. 10.1073/pnas.76.1.170.
Article
PubMed
CAS
PubMed Central
Google Scholar
Capitani G, Hohenester E, Feng L, Storici P, Kirsch JF, Jansonius JN: Structure of 1-aminocyclopropane-1-carboxylate synthase, a key enzyme in the biosynthesis of the plant hormone ethylene. J Mol Biol. 1999, 294 (3): 745-756. 10.1006/jmbi.1999.3255.
Article
PubMed
CAS
Google Scholar
Theologis A: One rotten apple spoils the whole bushel: The role of ethylene in fruit ripening. Cell. 1992, 70 (2): 181-184. 10.1016/0092-8674(92)90093-R.
Article
PubMed
CAS
Google Scholar
Soeno K, Goda H, Ishii T, Ogura T, Tachikawa T, Sasaki E, Yoshida S, Fujioka S, Asami T, Shimada Y: Auxin biosynthesis inhibitors, identified by a genomics-based approach, provide insights into auxin biosynthesis. Plant Cell Physiol. 2010, 51 (4): 524-536. 10.1093/pcp/pcq032.
Article
PubMed
CAS
Google Scholar
Liu H, Ying Y-Y, Zhang L, Gao Q-H, Li J, Zhang Z, Fang J-G, Duan K: Isolation and characterization of two YUCCA flavin monooxygenase genes from cultivated strawberry (Fragaria × ananassa Duch.). Plant Cell Rep. 2012, 31 (8): 1425-1435. 10.1007/s00299-012-1258-4.
Article
PubMed
CAS
Google Scholar
Liu K, Kang B-C, Jiang H, Moore SL, Li H, Watkins CB, Setter TL, Jahn MM: A GH3-like gene, CcGH3, isolated from Capsicum chinense L. fruit is regulated by auxin and ethylene. Plant Mol Biol. 2005, 58 (4): 447-464. 10.1007/s11103-005-6505-4.
Article
PubMed
CAS
Google Scholar
Chung M-Y, Vrebalov J, Alba R, Lee J, McQuinn R, Chung J-D, Klein P, Giovannoni J: A tomato (Solanum lycopersicum) APETALA2/ERF gene, SIAP2a, is a negative regulator of fruit ripening. Plant J. 2010, 64 (6): 936-947. 10.1111/j.1365-313X.2010.04384.x.
Article
PubMed
CAS
Google Scholar
Karlova R, Rosin FM, Busscher-Lange J, Parapunova V, Do PT, Fernie AR, Fraser PD, Baxter C, Angenent GC, De Maagd RA: Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening. Plant Cell. 2011, 23 (3): 923-941. 10.1105/tpc.110.081273.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bajguz A, Piotrowska A: Conjugates of auxin and cytokinin. Phytochemistry. 2009, 70 (8): 957-969. 10.1016/j.phytochem.2009.05.006.
Article
PubMed
CAS
Google Scholar
Korasick DA, Enders TA, Strader LC: Auxin biosynthesis and storage forms. J Exp Bot. 2013, 64 (9): 2541-2555. 10.1093/jxb/ert080.
Article
PubMed
CAS
PubMed Central
Google Scholar
Chervin C, Terrier N, Ageorges A, Ribes F, Kuapunyakoon T: Influence of ethylene on sucrose accumulation in grape berry. Am J Enol Vitic. 2006, 57 (4): 511-513.
CAS
Google Scholar
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al: Clustal W and Clustal X version 2.0. Bioinformatics. 2007, 23 (21): 2947-2948. 10.1093/bioinformatics/btm404.
Article
PubMed
CAS
Google Scholar
Felsenstein J: PHYLIP: Phylogeny inference package (Version 3.2). Cladistics. 1989, 5: 164-166.
Google Scholar
Davies C, Robinson SP: Sugar accumulation in grape berries - Cloning of two putative vacuolar invertase cDNAs and their expression in grapevine tissues. Plant Physiol. 1996, 111 (1): 275-283. 10.1104/pp.111.1.275.
Article
PubMed
CAS
PubMed Central
Google Scholar
Symons GM, Davies C, Shavrukov Y, Dry IB, Reid JB, Thomas MR: Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Physiol. 2006, 140 (1): 150-158.
Article
PubMed
CAS
PubMed Central
Google Scholar
Whelan JA, Russell NB, Whelan MA: A method for the absolute quantification of cDNA using real-time PCR. J Immunol Methods. 2003, 278 (1–2): 261-269.
Article
PubMed
CAS
Google Scholar