Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, et al: The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature. 2007, 449: 463-467. 10.1038/nature06148.
PubMed
CAS
Google Scholar
Velasco R, Zharkikh A, Troggio M, Carthwright DA, Cestaro A, Pruss D, Pindo M, FitzGerald LM, Vezzulli S, Reid J, Malacarne G, Iliev D, Coppola G, Wardell B, Micheletti D, Macalma T, Facci M, Mitchell JT, Perazzolli M, Eldredge G, Gatto P, Oyzerski R, Moretto M, Gutin N, Stefanini M, Chen Y, Segala C, Davenport C, Demattè L, Mraz A, et al: A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE. 2007, 12: e1326.
Google Scholar
Boursiquot JM, Dessup M, Rennes C: Distribution des principaux caractères phénologiques, agronomiques et technologiques chez Vitis vinifera L. Vitis. 1995, 34: 31-35.
Google Scholar
Houel C, Martin-Magniette ML, Nicolas SD, Lacombe T, Le Cunff L, Franck D, Torregrosa L, Conéjéro G, Lalet S, This P, Adam-Blondon AF: Genetic variability of berry size in the grapevine (Vitis vinifera L.). Aust J Grape Wine Res. 2013, 19: 208-220. 10.1111/ajgw.12021.
Google Scholar
Coombe BG: The development of fleshy fruits. Annu Rev Plant Physiol. 1976, 27: 507-528. 10.1146/annurev.pp.27.060176.002451.
Google Scholar
Mullins MG, Bouquet A, Williams LE: Developmental physiology: flowering and fruiting. Biology of the grapevine. Edited by: Mullins MG, Bouquet A, Williams LE. Cambridge: University Press; 1992, 112-146.
Google Scholar
Ojeda H, Deloire A, Carbonneau A, Ageorges A, Romieu C: Berry development of grapevines: relations between the growth of berries and their DNA content indicate cell multiplication and enlargement. Vitis. 1999, 38: 145-150.
Google Scholar
Friend AP, Trought MCT, Creasy GL: The influence of seed weight on the development and growth of berries and live green ovaries in Vitis vinifera L. cvs. Pinot Noir and Cabernet Sauvignon. Aust J Grape Wine Res. 2009, 15: 166-174. 10.1111/j.1755-0238.2009.00050.x.
Google Scholar
Ollat N, Diakou-Verdin P, Carde JP, Barrieu F, Gaudillère JP, Moing A: Grape berry development: a review. J Int Sci Vigne Vin. 2002, 36: 109-131.
CAS
Google Scholar
Chervin C, El-Kereamy A, Roustan JP, Latche A, Lamon J, Bouzayen M: Ethylene seems required for the berry development and ripening in grape, a non-climacteric fruit. Plant Sci. 2004, 167: 1301-1305. 10.1016/j.plantsci.2004.06.026.
CAS
Google Scholar
Chervin C, Tira-umphon A, Terrier N, Zouine M, Severac D, Roustan JP: Stimulation of the grape berry expansion by ethylene and effects on related gene transcripts, over the ripening phase. Physiol Plant. 2008, 134: 534-546. 10.1111/j.1399-3054.2008.01158.x.
PubMed
CAS
Google Scholar
Davies C, Boss PK, Robinson SP: Treatment of grape berries, a nonclimacteric fruit with a synthetic auxin, retards ripening and alters the expression of developmentally regulated genes. Plant Physiol. 1997, 115: 1155-1161.
PubMed
CAS
PubMed Central
Google Scholar
Scienza A, Miravallec C, Fregoni M: Relationship between seed number, gibberellin and abcissic acid levels and ripening in Cabernet Sauvignon grape berries. Vitis. 1978, 17: 361-368.
CAS
Google Scholar
Moreno D, Berli F, Piccoli P, Bottini R: Gibberellins and abscisic acid promote carbon allocation in roots and berries of grapevines. J Plant Growth Regul. 2011, 30: 220-228. 10.1007/s00344-010-9186-4.
CAS
Google Scholar
Cadot Y, Miñana-Castelló MT, Chevalier M: Anatomical, histological, and histochemical changes in grape seeds from Vitis vinifera L. cv cabernet franc during fruit development. J Agric Food Chem. 2006, 54: 9206-9215. 10.1021/jf061326f.
PubMed
CAS
Google Scholar
Ledbetter CA, Ramming DW: Seedlessness in grapes. Horticultural Review. 1989, 11: 159-184.
Google Scholar
Striem MJ, Ben-Hayyim G, Spiegel-Roy P: Identifying molecular genetic markers associated with seedlessness in grape. J Am Soc Hortic Sci. 1996, 121: 758-763.
CAS
Google Scholar
Staudt G, Schneider W, Leidel J: Phases of berry growth in Vitis vinifera. Ann Bot. 1986, 58: 789-800.
Google Scholar
Boselli M, Volpe B, Di Vaio C: Effect of seed number per berry on mineral composition of grapevine (Vitis vinifera L.) berries. J Hortic Sci. 1995, 70: 509-515.
Google Scholar
Ebadi A, May P, Coombe BG: Effect of short-term temperature and shading on fruit-set, seed and berry development in model vines of V. vinifera, cvs Chardonnay and Shiraz. Aust J Grape Wine Res. 1996, 2: 2-9.
Google Scholar
May P: From bud to berry, with special reference to inflorescence and bunch morphology in Vitis vinifera L. Aust J Grape Wine Res. 2000, 6: 82-98. 10.1111/j.1755-0238.2000.tb00166.x.
Google Scholar
Petrie PR, Trought MCT, Howell GS: Fruit composition and ripening of Pinot Noir (Vitis vinifera L.) in relation to leaf area. Aust J Grape Wine Res. 2000, 6: 46-51. 10.1111/j.1755-0238.2000.tb00161.x.
Google Scholar
Walker RR, Deidre HB, Clingeleffer PR, Kerridge GH, Rühl EH, Nicholas PR: Shiraz berry size in relation to seed number and implications for juice and wine composition. Aust J Grape Wine Res. 2005, 11: 2-8. 10.1111/j.1755-0238.2005.tb00273.x.
CAS
Google Scholar
Wagner R, Antcliff J: A study of sexual progenies of Bicane x Sultanina (Vitis vinifera L.): evidence for genetic differences between Sultana clones in berry weight. Proceedings of the IIIrd Symposium on Grape Genetics and Breeding. 1980, 65-77.
Google Scholar
Doligez A, Bouquet A, Danglot Y, Lahogue F, Riaz S, Meredith CP, Edwards KJ, This P: Genetic mapping of grapevine (Vitis vinifera L.) applied to the detection of QTLs for seedlessness and berry weight. Theor Appl Genet. 2002, 105: 780-795. 10.1007/s00122-002-0951-z.
PubMed
CAS
Google Scholar
Fanizza G, Lamaj F, Costantini L, Chaabane R: QTL analysis for fruit yield components in table grapes (Vitis vinifera). Theor Appl Genet. 2005, 111: 658-664. 10.1007/s00122-005-2016-6.
PubMed
CAS
Google Scholar
Cabezas JA, Cervera MT, Ruiz-Garcia L, Carreño J, Martinez-Zapater JM: A genetic analysis of seed and berry weight in grapevine. Genome. 2006, 49: 1572-1585. 10.1139/g06-122.
PubMed
CAS
Google Scholar
Mejia N, Gebauer M, Muñoz L, Hewstone N, Muñoz C, Hinrichsen P: Identification of QTLs for seedlessness, berry size, and ripening date in a seedless x seedless table grape progeny. Am J Enol Vitic. 2007, 58: 499-507.
Google Scholar
Costantini L, Battilana J, Lamaj F, Fanizza G, Grando MS: Berry and phenology-related traits in grapevine (Vitis vinifera L.): from quantitative trait loci to underlying genes. BMC Plant Biol. 2008, 8: 38. 10.1186/1471-2229-8-38.
PubMed
PubMed Central
Google Scholar
Meijia N, Soto B, Guerrero M, Casanueva X, Houel C, De los Angeles Miccono M, Ramos R, Le Cunff L, Boursiquot JM, Hinrichsen P, Adam-Blondon AF: Molecular, genetic and transcriptional evidence for a role of VvaGL11 in stenospermocarpic seedlessness in grapevine. BMC Plant Biol. 2011, 11: 57. 10.1186/1471-2229-11-57.
Google Scholar
Wei X, Sykes SR, Clingeleffer PR: An investigation to estimate genetic parameters in CSIRO’s table grape breeding program 2: quality characteristics. Euphytica. 2002, 128: 343-351. 10.1023/A:1021288618316.
CAS
Google Scholar
Ebadi A, Moghadam JE, Fatahi R: Evaluation of 22 populations achieved from controlled crossing between some seeded x seedless grapevine cultivars. Sci Hortic. 2009, 119: 371-376. 10.1016/j.scienta.2008.08.014.
CAS
Google Scholar
Wagner R: Study of phenotypic variation by analysing data gathered together by O.I.V. on new varieties of table grapes. Proceedings of the Vth Symposium on Grape Genetics and Breeding. 1989, 178-186.
Google Scholar
Coombe BG: Relationship of growth and development to changes in sugars, auxins, and gibberellins in fruit of seeded and seedless varieties of Vitis vinifera. Plant Physiol. 1960, 35: 241-250. 10.1104/pp.35.2.241.
PubMed
CAS
PubMed Central
Google Scholar
Perez FJ, Viani C, Retamales J: Bioactive gibberellins in seeded and seedless grapes: identification and changes in content during berry development. Am J Enol Vitic. 2000, 51: 315-318.
CAS
Google Scholar
Weaver RJ, Pool RM: Relation of seededness and ringing to gibberellin-like activity in berries of Vitis vinifera. Plant Physiol. 1965, 40: 770-776. 10.1104/pp.40.4.770.
PubMed
CAS
PubMed Central
Google Scholar
Considine JA, Coombe BG: The interaction of gibberellic acid and 2-(chloroethyl) trimethyl ammonium chloride on fruit cluster development in Vitis vinifera L. (m. dt. Zus.). Vitis. 1972, 11: 108-123.
CAS
Google Scholar
Eibach R: Investigations about the influence of some physiological and phenological characteristics on quality and their heredity. Proceedings of the Vth Symposium on Grape Genetics and Breding. 1989, 149-158.
Google Scholar
Daulta BS, Bakhshi JC, Chandra S: Evaluation of vinifera varieties for genotypic and phenotypic variability. Indian J Hortic. 1972, 29: 150-157.
Google Scholar
Golodriga PI, Trochine LP: Héritabilité des caractères quantitatifs chez la vigne. Proceedings of the IInd Symposium on Grape Genetics and Breeding. 1978, 113-117.
Google Scholar
Firoozabady E, Olmo HP: Heritability and correlation studies of certain quantitative traits in table grapes, Vitis spp. Vitis. 1987, 26: 132-146.
Google Scholar
Singh R, Jalikop SH: Studies on variability in grape. Indian J Hortic. 1986, 43: 207-215.
Google Scholar
Fischer BM, Salakhutdinov I, Akkurt M, Eibach R, Edwards KJ, Töpfer R, Zyprian EM: Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theor Appl Genet. 2004, 108: 501-515. 10.1007/s00122-003-1445-3.
PubMed
CAS
Google Scholar
Houel C, Bounon R, Chaïb J, Guichard C, Péros JP, Bacilieri R, Dereeper A, Canaguier A, Lacombe T, N’Diaye A, Le Paslier MC, Vernerey MS, Coriton O, Brunel D, This P, Torregrosa L, Adam-Blondon AF: Patterns of sequence polymorphism in the fleshless berry locus in cultivated and wild Vitis vinifera accessions. BMC Plant Biol. 2010, 10: 284. 10.1186/1471-2229-10-284.
PubMed
CAS
PubMed Central
Google Scholar
Houel C: Caractérisation de la variation phénotypique de la taille de la baie chez la vigne Vitis vinifera L. et approches de génétique d’association et recherche de traces de sélection pour ce caractère. PhD thesis. Université d’Evry Val d’Essonne, France, Ecole doctorale des Génomes aux Organismes; 2011.
Google Scholar
Bouquet A, Danglot Y: Inheritance of seedlessness in grapevine (Vitis vinifera L.). Vitis. 1996, 35: 35-42.
Google Scholar
Doligez A, Audiot E, Baumes R, This P: QTLs for muscat flavor and monoterpenic odorant content in grapevine (Vitis vinifera L.). Mol Breed. 2006, 18: 109-125. 10.1007/s11032-006-9016-3.
CAS
Google Scholar
Doligez A, Bertrand Y, Dias S, Grolier M, Ballester JF, Bouquet A, This P: QTLs for fertility in table grape (Vitis vinifera L.). Tree Genet Genomes. 2010, 6: 413-422. 10.1007/s11295-009-0259-0.
Google Scholar
Huang YF, Doligez A, Fournier-Level A, Le Cunff L, Bertrand Y, Canaguier A, Morel C, Miralles V, Veran F, Souquet JM, Cheynier V, Terrier N, This P: Dissecting genetic architecture of grape proanthocyanidin composition through quantitative trait locus mapping. BMC Plant Biol. 2012, 12: 30. 10.1186/1471-2229-12-30.
PubMed
CAS
PubMed Central
Google Scholar
R Development Core Team: R: a language and environment for statistical computing. 2011, Vienna, Austria: R Foundation for Statistical Computing, URL http://www.R-project.org/, ISBN 3-900051-07-0
Google Scholar
Royston P: Remark AS R94: a remark on algorithm AS 181: the W test for normality. Appl Stat. 1995, 44: 547-551. 10.2307/2986146.
Google Scholar
Wang S, Basten CJ, Zeng ZB: Windows QTL Cartographer 2.0. User Manual. Department of Statistics, North Carolina State University; 2004. http://statgen.ncsu.edu/qtlcart/WinQTLCart.pdf.
Google Scholar
Basten CJ, Weir BS, Zeng ZB: Zmap-a QTL cartographer. Proceedings of the 5th World Congress on Genetics Applied to Livestock Production: Computing Strategies and Software. Edited by: Smith C, Gavora JS, Benkel B, Chesnais J, Fairfull W, Gibson JP, Kennedy BW, Burnside EB. Guelph, Ontario, Canada: Organizing Committee of the 5th World Congress on Genetics Applied to Livestock Production; 1994, 65-66.
Google Scholar
Basten CJ, Weir BS, Zeng ZB: QTL Cartographer, Version 1.17: a Reference Manual and Tutorial for QTL Mapping. Raleigh, NC: Department of Statistics, North Carolina State University; 2003.
Google Scholar
Van Ooijen JW, Maliepaard C: MapQTLTM version 3.0: Software for the calculation of QTL positions on genetic maps. 1996, CPRO-DLO, http://www.kyazma.nl/index.php/mc.MapQTL/.
Google Scholar
Segura V, Denancé C, Durel C, Costes E: Wide range QTL analysis for complex architectural traits in a 1-year-old apple progeny. Genome. 2007, 50: 159-171. 10.1139/G07-002.
PubMed
CAS
Google Scholar
De Franceschi P, Stegmeir T, Cabrera A, van der Knaap E, Rosyara UR, Sebolt AM, Dondini L, Dirlewanger E, Quero-Garcia J, Campoy JA, Iezzoni AF: Cell number regulator genes in Prunus provide candidate genes for the control of fruit size in sweet and sour cherry. Mol Breeding. 2013, 32: 311-326. 10.1007/s11032-013-9872-6.
CAS
Google Scholar
Chakrabarti M, Zhang N, Sauvage C, Muños S, Blanca J, Cañizares J, Diez MJ, Schneider R, Mazourek M, McClead J, Causse M, van der Knaap E: A cytochrome P450 regulates a domestication trait in cultivated tomato. P Natl Acad Sci USA. 2013, 110: 17125-17130. 10.1073/pnas.1307313110.
CAS
Google Scholar
Price AH: Believe it or not, QTLs are accurate!. Trends Plant Sci. 2006, 11: 213-216. 10.1016/j.tplants.2006.03.006.
PubMed
CAS
Google Scholar
Guo M, Rupe MA, Dieter JA, Zou JJ, Spielbauer D, Duncan KE, Howard RJ, Hou ZL, Simmons CR: Cell number regulator1 affects plant and organ size in maize: implications for crop yield enhancement and heterosis. Plant Cell. 2010, 22: 1057-1073. 10.1105/tpc.109.073676.
PubMed
CAS
PubMed Central
Google Scholar
Poupin M, Federici F, Medina C, Matus J, Timmermann T, Arce-Johnson P: Isolation of the three grape sub-lineages of B-class MADS-box TM6, PISTILLATA and APETALA3 genes which are differentially expressed during flower and fruit development. Gene. 2007, 404: 10-24. 10.1016/j.gene.2007.08.005.
PubMed
CAS
Google Scholar
Fernandez L, Torregrosa L, Terrier N, Sreekantan L, Grimplet J, Davies C, Thomas MR, Romieu C, Ageorges A: Identification of genes associated with flesh morphogenesis during grapevine fruit development. Plant Mol Biol. 2007, 63: 307-323. 10.1007/s11103-006-9090-2.
PubMed
CAS
Google Scholar
Schlosser J, Olsson N, Weis M, Reid K, Peng F, Lund S, Bowen P: Cellular expansion and gene expression in the developing grape (Vitis vinifera L.). Protoplasma. 2008, 232: 255-265. 10.1007/s00709-008-0280-9.
PubMed
CAS
Google Scholar
Lijavetzky D, Carbonell-Bejerano P, Grimplet J, Bravo G, Flores P, Fenoll J, Hellin P, Oliveros J, Martinez-Zapater J: Berry flesh and skin ripening features in Vitis vinifera as assessed by transcriptional profiling. PLoS ONE. 2012, 7: e39547. 10.1371/journal.pone.0039547.
PubMed
CAS
PubMed Central
Google Scholar
Guillaumie S, Fouquet R, Kappel C, Camps C, Terrier N, Moncomble D, Dunlevy J, Davies C, Boss P, Delrot S: Transcriptional analysis of late ripening stages of grapevine berry. BMC Plant Biol. 2011, 11: 165. 10.1186/1471-2229-11-165.
PubMed
CAS
PubMed Central
Google Scholar
Nunan KJ, Davies C, Robinson SP, Fincher GB: Expression patterns of cell wall-modifying enzymes during grape berry development. Planta. 2001, 214: 257-264. 10.1007/s004250100609.
PubMed
CAS
Google Scholar
Boss PK, Sensi E, Hua C, Davies C, Thomas MR: Cloning and characterisation of grapevine (Vitis vinifera L.) MADS-box genes expressed during inflorescence and berry development. Plant Sci. 2002, 162: 887-895. 10.1016/S0168-9452(02)00034-1.
CAS
Google Scholar
Yang G, Cao X, Fang J, Huang Z, Tao J, Wang C: Sub-cellular localization and expression analysis of genes involved in grapevine floral development. Sci Agric Sin. 2011, 44: 641-650.
CAS
Google Scholar
Frary A, Nesbitt TC, Frary A, Grandillo S, van der Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD: fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science. 2000, 289: 85-88. 10.1126/science.289.5476.85.
PubMed
CAS
Google Scholar
Segura V, Durel C, Costes E: Dissecting apple tree architecture into genetic, ontogenetic and environmental effects: QTL mapping. Tree Genet Genomes. 2009, 5: 165-179. 10.1007/s11295-008-0181-x.
Google Scholar
Fournier-Level A, Le Cunff L, Gomez C, Doligez A, Ageorges A, Roux C, Bertrand Y, Souquet JM, Cheynier V, This P: Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp. sativa) berry: a quantitative trait locus to quantitative trait nucleotide integrated study. Genetics. 2009, 183: 1127-1139. 10.1534/genetics.109.103929.
PubMed
CAS
PubMed Central
Google Scholar
Duchene E, Butterlin G, Dumas V, Merdinoglu D: Towards the adaptation of grapevine varieties to climate change: QTLs and candidate genes for developmental stages. Theor Appl Genet. 2012, 124: 623-635. 10.1007/s00122-011-1734-1.
PubMed
Google Scholar
Broman KW, Wu H, Sen Ś, Churchill GA: R/qtl: QTL mapping in experimental crosses. Bioinformatics. 2003, 19: 889-890. 10.1093/bioinformatics/btg112.
PubMed
CAS
Google Scholar
Dalbo MA, Ye GN, Weeden NF, Steinkellner H, Sefc KM, Reisch BI: A gene controlling sex in grapevines placed on a molecular marker-based genetic map. Genome. 2000, 43: 333-340. 10.1139/g99-136.
PubMed
CAS
Google Scholar
Lowe KM, Walker MA: Genetic linkage map of the interspecific grape rootstock cross Ramsey (Vitis champinii) x Riparia Gloire (Vitis riparia). Theor Appl Genet. 2006, 112: 1582-1592. 10.1007/s00122-006-0264-8.
PubMed
CAS
Google Scholar
Riaz S, Krivanek AF, Xu K, Walker MA: Refined mapping of Pierce’s disease resistance locus, PdR1, and sex on an extended genetic map of Vitis rupestris x V. arizonica. Theor Appl Genet. 2006, 113: 1317-1329. 10.1007/s00122-006-0385-0.
PubMed
CAS
Google Scholar
Marguerit E, Boury C, Manicki A, Donnart M, Butterlin G, Nemorin A, Wiedemann-Merdinoglu S, Merdinoglu D, Ollat N, Decroocq S: Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine. Theor Appl Genet. 2009, 118: 1261-1278. 10.1007/s00122-009-0979-4.
PubMed
Google Scholar
Appazova AO: Induction of parthenocarpy in grape. Doklady TSKhA. 1977, 231: 102-105.
Google Scholar
Uzun I, Agaoglu S, Soylemezoglu G: Ampelographic characteristics and isozymic analysis of wild grapevines ( Vitis vinifera ssp. silvestris Gmel.) in southwestern Turkey. Proceedings of the International symposium on in situ conservation of plant genetic diversity, 4–8 November 1996; Antalya, Turkey. Edited by: Zencirci N, Kaya Z, Anikster Y, Adams WT. 1998, Ankara; Turkey: Central Research Institute for Field Crops, 163-169.
Google Scholar
Hofacker W: Investigations into seed weight and seed number of grapevine and their influence on berry weight. Mitt Klosterneuburg Rebe Wein Obstb Fruchteverwert. 2003, 53: 235-242.
Google Scholar
Myles S, Boyko AR, Owens CL, Brown PJ, Grassi F, Aradhya MK, Prins B, Reynolds A, Chia JM, Ware D, Bustamante CD, Buckler ES: Genetic structure and domestication history of the grape. Proc Natl Acad Sci USA. 2011, 108: 3530-3535. 10.1073/pnas.1009363108.
PubMed
CAS
PubMed Central
Google Scholar
Grassi F, Labra M, Imazio S, Spada A, Sgorbati S, Scienza A, Sala F: Evidence of a secondary grapevine domestication centre detected by SSR analysis. Theor Appl Genet. 2003, 107: 1315-1320. 10.1007/s00122-003-1321-1.
PubMed
CAS
Google Scholar
Riahi L, Laucou V, Le Cunff L, Zoghlami N, Boursiquot J, Lacombe T, El-Heit K, Mliki A, This P: Highly polymorphic nSSR markers: a useful tool to assess origin of North African cultivars and to provide additional proofs of secondary grapevine domestication events. Sci Hortic. 2012, 141: 53-60.
CAS
Google Scholar
Gillapsy G, Ben-David H, Gruissem W: Fruits: a developmental perspective. Plant Cell. 1993, 5: 1439-1451.
Google Scholar
Robinson SP, Davies C: Molecular biology of grape berry ripening. Aust J Grape Wine Res. 2000, 6: 175-188. 10.1111/j.1755-0238.2000.tb00177.x.
CAS
Google Scholar
Espinoza A, Contreras D, Orellana M, Perez R, Aguirre C, Castro A, Riquelme A, Fichet T, Pinto M, Hinrichsen P: Modulation by gibberellic acid of aquaporin genes expression during berry development of grapevine (Vitis vinifera L.). Acta Hort. 2009, 355-362.
Google Scholar
Shelden M, Howitt S, Kaiser B, Tyerman S: Identification and functional characterisation of aquaporins in the grapevine, Vitis vinifera. Funct Plant Biol. 2009, 36: 1065-1078. 10.1071/FP09117.
CAS
Google Scholar
Zenoni S, Ferrarini A, Giacomelli E, Xumerle L, Fasoli M, Malerba G, Bellin D, Pezzotti M, Delledonne M: Characterization of transcriptional complexity during berry development in Vitis vinifera using RNA-seq. Plant Physiol. 2010, 152: 1787-1795. 10.1104/pp.109.149716.
PubMed
CAS
PubMed Central
Google Scholar
Kaps ML, Cahoon GA: Growth and fruiting of container-grown Seyval blanc grapevines modified by changes in crop level, leaf number and position, and light exposure. Am J Enol Vitic. 1992, 43: 191-199.
Google Scholar
Peng F, Reid K, Liao N, Schlosser J, Lijavetzky D, Holt R, Martinez Zapater J, Jones S, Marra M, Bohlmann J, Lund S: Generation of ESTs in Vitis vinifera wine grape (Cabernet Sauvignon) and table grape (Muscat Hamburg) and discovery of new candidate genes with potential roles in berry development. Gene. 2007, 402: 40-50. 10.1016/j.gene.2007.07.016.
PubMed
CAS
Google Scholar
Boss PK, Thomas MR: Association of dwarfism and floral induction with a grape ‘green revolution’ mutation. Nature. 2002, 416: 847-850. 10.1038/416847a.
PubMed
CAS
Google Scholar
Diaz-Riquelme J, Lijavetzky D, Martinez-Zapater JM, Carmona MJ: Genome-wide analysis of MIKC C-type MADS box genes in grapevine. Plant Physiol. 2009, 149: 354-369. 10.1104/pp.108.131052.
PubMed
CAS
PubMed Central
Google Scholar
Davies C, Wolf T, Robinson S: Three putative sucrose transporters are differentially expressed in grapevine tissues. Plant Sci (Limerick). 1999, 147: 93-100. 10.1016/S0168-9452(99)00059-X.
CAS
Google Scholar
Nicolas P, Lecourieux D, Gomès E, Delrot S, Lecourieux F: The grape berry-specific basic helix–loop–helix transcription factor VvCEB1 affects cell size. J Exp Bot. 2013, 64: 991-1003. 10.1093/jxb/ers374.
PubMed
CAS
PubMed Central
Google Scholar
Ito T, Meyerowitz EM: Overexpression of a gene encoding a cytochrome p450, CYP78A9, induces large and seedless fruit in Arabidopsis. Plant Cell. 2000, 12: 1541-1550.
PubMed
CAS
PubMed Central
Google Scholar
Suzuki M, Kamide Y, Nagata N, Seki H, Ohyama K, Kato H, Masuda K, Sato S, Kato T, Tabata S, Yoshida S, Muranaka T: Loss of function of 3-hydroxy-3-methylglutaryl coenzyme A reductase 1 (HMG1) in Arabidopsis leads to dwarfing, early senescence and male sterility, and reduced sterol levels. Plant J. 2004, 37: 750-761. 10.1111/j.1365-313X.2004.02003.x.
PubMed
CAS
Google Scholar
Wang XC, Ren GH, Fang JG, Lia Y, Liu H, Wu WM, Zhao MZ: Cloning, subcellular localization and expression analysis of genes related to the synthesis of gibberellin from grapevine. Sci Agric Sin. 2012, 45: 2224-2231.
CAS
Google Scholar
Davies C, Robinson SP: Differential screening indicates a dramatic change in mRNA profiles during grape berry ripening: cloning and characterization of cDNAs encoding putative cell wall and stress response proteins. Plant Physiol. 2000, 122: 803-812. 10.1104/pp.122.3.803.
PubMed
CAS
PubMed Central
Google Scholar
Shangguan L, Han J, Fang J, Wang X, Leng X: Identification of grape (Vitis vinifera L.) genes from EST sequences responding to exogenous gibberellins treatment. J Agric Biotech. 2012, 20: 135-145.
CAS
Google Scholar
Silverstone AL, Tseng TS, Swain SM, Dill A, Jeong SY, Olszewski NE, Sun TP: Functional analysis of SPINDLY in gibberellin signaling in Arabidopsis. Plant Physiol. 2007, 143: 987-1000.
PubMed
CAS
PubMed Central
Google Scholar
Nishimura T, Wada T, Yamamoto KT, Okada K: The Arabidopsis STV1 protein, responsible for translation reinitiation, is required for auxin-mediated gynoecium patterning. Plant Cell. 2005, 17: 2940-2953. 10.1105/tpc.105.036533.
PubMed
CAS
PubMed Central
Google Scholar
Boss PK, Vivier M, Matsumoto S, Dry IB, Thomas MR: A cDNA from grapevine ( Vitis vinifera L.), which shows homology to AGAMOUS and SHATTERPROOF, is not only expressed in flowers but also throughout berry development. Plant Mol Biol. 2001, 45: 541-553. 10.1023/A:1010634132156.
PubMed
CAS
Google Scholar
Ishimaru M, Smith D, Gross K, Kobayashi S: Expression of three expansin genes during development and maturation of Kyoho grape berries. J Plant Physiol. 2007, 164: 1675-1682. 10.1016/j.jplph.2006.07.017.
PubMed
CAS
Google Scholar
Hanania U, Velcheva M, Sahar N, Flaishman M, Or E, Degani O, Perl A: The ubiquitin extension protein S27a is differentially expressed in developing flower organs of Thompson seedless versus Thompson seeded grape isogenic clones. Plant Cell Rep. 2009, 28: 1033-1042. 10.1007/s00299-009-0715-1.
PubMed
CAS
Google Scholar
Fillion L, Ageorges A, Picaud S, Coutos-Thevenot P, Lemoine R, Romieu C, Delrot S: Cloning and expression of a hexose transporter gene expressed during the ripening of grape berry. Plant Physiol. 1999, 120: 1083-1093. 10.1104/pp.120.4.1083.
PubMed
CAS
PubMed Central
Google Scholar
Wang S, Yu Y, Zhang C, Xu W, Wang Y: Molecular cloning and characterization of a novel gene encoding an EF-hand calcium-binding protein related to fruit seedlessness of grapevine. Sci Hortic. 2011, 130: 708-714. 10.1016/j.scienta.2011.07.029.
CAS
Google Scholar