Vlot AC, Klessig DF, Park SW: Systemic acquired resistance: the elusive signal(s). Curr Opin Plant Biol. 2008, 11 (4): 436-442. 10.1016/j.pbi.2008.05.003.
Article
PubMed
CAS
Google Scholar
Heil M: Ecological costs of induced resistance. Curr Opin Plant Biol. 2002, 5 (4): 345-350. 10.1016/S1369-5266(02)00267-4.
Article
PubMed
Google Scholar
van Hulten M, Pelser M, van Loon LC, Pieterse CM, Ton J: Costs and benefits of priming for defense in Arabidopsis. Proc Natl Acad Sci USA. 2006, 103 (14): 5602-5607. 10.1073/pnas.0510213103.
Article
PubMed
CAS
PubMed Central
Google Scholar
Koornneef A, Pieterse CM: Cross talk in defense signaling. Plant Physiol. 2008, 146 (3): 839-844. 10.1104/pp.107.112029.
Article
PubMed
CAS
PubMed Central
Google Scholar
Glazebrook J: Genes controlling expression of defense responses in Arabidopsis–2001 status. Curr Opin Plant Biol. 2001, 4 (4): 301-308. 10.1016/S1369-5266(00)00177-1.
Article
PubMed
CAS
Google Scholar
Zhang S, Klessig DF: MAPK cascades in plant defense signaling. Trends Plant Sci. 2001, 6 (11): 520-527. 10.1016/S1360-1385(01)02103-3.
Article
PubMed
CAS
Google Scholar
Zhang HZ, Cai XZ: Nonexpressor of pathogenesis-related genes 1 (NPR1): a key node of plant disease resistance signalling network. Sheng Wu Gong Cheng Xue Bao. 2005, 21 (4): 511-515.
PubMed
CAS
Google Scholar
Dong X: NPR1, all things considered. Curr Opin Plant Biol. 2004, 7 (5): 547-552. 10.1016/j.pbi.2004.07.005.
Article
PubMed
CAS
Google Scholar
Cao H, Glazebrook J, Clarke JD, Volko S, Dong X: The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell. 1997, 88 (1): 57-63. 10.1016/S0092-8674(00)81858-9.
Article
PubMed
CAS
Google Scholar
McDowell JM, Cuzick A, Can C, Beynon J, Dangl JL, Holub EB: Downy mildew (Peronospora parasitica) resistance genes in Arabidopsis vary in functional requirements for NDR1, EDS1, NPR1 and salicylic acid accumulation. Plant J. 2000, 22 (6): 523-529. 10.1046/j.1365-313x.2000.00771.x.
Article
PubMed
CAS
Google Scholar
Nawrath C, Metraux JP: Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell. 1999, 11 (8): 1393-1404.
PubMed
CAS
PubMed Central
Google Scholar
Zhang Y, Tessaro MJ, Lassner M, Li X: Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance. Plant Cell. 2003, 15 (11): 2647-2653. 10.1105/tpc.014894.
Article
PubMed
CAS
PubMed Central
Google Scholar
Li X, Zhang Y, Clarke JD, Li Y, Dong X: Identification and cloning of a negative regulator of systemic acquired resistance, SNI1, through a screen for suppressors of npr1-1. Cell. 1999, 98 (3): 329-339. 10.1016/S0092-8674(00)81962-5.
Article
PubMed
CAS
Google Scholar
Zhang Y, Cheng YT, Qu N, Zhao Q, Bi D, Li X: Negative regulation of defense responses in Arabidopsis by two NPR1 paralogs. Plant J. 2006, 48 (5): 647-656. 10.1111/j.1365-313X.2006.02903.x.
Article
PubMed
CAS
Google Scholar
Journot-Catalino N, Somssich IE, Roby D, Kroj T: The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. Plant Cell. 2006, 18 (11): 3289-3302. 10.1105/tpc.106.044149.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bowling SA, Guo A, Cao H, Gordon AS, Klessig DF, Dong X: A mutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance. Plant Cell. 1994, 6 (12): 1845-1857.
Article
PubMed
CAS
PubMed Central
Google Scholar
Weigel R, Bauscher C, Pfitzner A, Pfitzner U: NIMIN-1, NIMIN-2 and NIMIN-3, members of a novel family of proteins from Arabidopsis that interact with NPR1/NIM1, a key regulator of systemic acquired resistance in plants. Plant Mol Biol. 2001, 46: 143-160. 10.1023/A:1010652620115.
Article
PubMed
CAS
Google Scholar
Weigel R, Pfitzner U, Gatz C: Interaction of NIMIN1 with NPR1 modulates PR gene expression in Arabidopsis. Plant Cell. 2005, 17: 1279-1291. 10.1105/tpc.104.027441.
Article
PubMed
CAS
PubMed Central
Google Scholar
Durrant WE, Wang S, Dong X: Arabidopsis SNI1 and RAD51D regulate both gene transcription and DNA recombination during the defense response. Proc Natl Acad Sci USA. 2007, 104 (10): 4223-4227. 10.1073/pnas.0609357104.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wu F, Zhang D, Chu J, Boyle P, Wang YC, Brindle I, De Luca V, Despres C: The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep. 2012, 1: 639-647. 10.1016/j.celrep.2012.05.008.
Article
PubMed
CAS
Google Scholar
Canet JV, Dobon A, Roig A, Tornero P: Structure-function analysis of npr1 alleles in Arabidopsis reveals a role for its paralogs in the perception of salicylic acid. Plant Cell Environ. 2010, 33 (11): 1911-1922. 10.1111/j.1365-3040.2010.02194.x.
Article
PubMed
CAS
Google Scholar
Maier F, Zwicker S, Huckelhoven A, Meissner M, Funk J, Pfitzner AJP, Pfitzner UM: NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) and some NPR1-related proteins are sensitive to salicylic acid. Mol Plant Pathol. 2011, 12 (1): 73-91. 10.1111/j.1364-3703.2010.00653.x.
Article
PubMed
CAS
Google Scholar
Mejia L, Guiltinan M, Shi Z, Landherr L, Maximova S: Expression of Designed Antimicrobial Peptides in Theobroma cacao L. Trees Reduces Leaf Necrosis Causedby Phytophthora spp. Small Wonders: Peptides for Disease Control. 2012, 1095: 379-395.
CAS
Google Scholar
Fu ZQ, Yan S, Saleh A, Wang W, Ruble J, Oka N, Mohan R, Spoel SH, Tada Y, Zheng N, et al: NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature. 2012, 486 (7402): 228-232.
PubMed
CAS
PubMed Central
Google Scholar
Purdy LH, Schmidt RA: Status of cacao witches’ broom: biology, epidemiology, and management. Annu Rev Phytopathol. 1996, 34: 573-594. 10.1146/annurev.phyto.34.1.573.
Article
PubMed
CAS
Google Scholar
Meinhardt LW, Rincones J, Bailey BA, Aime MC, Griffith GW, Zhang D, Pereira GA: Moniliophthora perniciosa, the causal agent of witches’ broom disease of cacao: what’s new from this old foe?. Mol Plant Pathol. 2008, 9 (5): 577-588. 10.1111/j.1364-3703.2008.00496.x.
Article
PubMed
Google Scholar
Andebrhan T, Maddison AC, Rudgard SA: International Office of Cocoa Chocolate and Sugar Confectionary: Disease management in cocoa : comparative epidemiology of witches’ broom. London: Chapman & Hall; 1993.
Google Scholar
Mondego JM, Carazzolle MF, Costa GG, Formighieri EF, Parizzi LP, Rincones J, Cotomacci C, Carraro DM, Cunha AF, Carrer H, et al: A genome survey of Moniliophthora perniciosa gives new insights into witches’ broom disease of cacao. BMC Genomics. 2008, 9: 548-10.1186/1471-2164-9-548.
Article
PubMed
PubMed Central
Google Scholar
Lopes MA, Hora Junior BT, Dias CV, Santos GC, Gramacho KP, Cascardo JCM, Gesteira AS, Micheli F: Expression analysis of transcription factors from the interaction between cacao and Moniliophthora perniciosa (Tricholomataceae). Genet Mol Res. 2010, 9 (3): 1279-1297. 10.4238/vol9-3gmr825.
Article
PubMed
CAS
Google Scholar
Marelli J-P, Maximova S, Gramacho K, Kang S, Guiltinan M: Infection Biology of Moniliophthora perniciosa on Theobroma cacao and alternate Solanaceous hosts. Trop Plant Biol. 2009, 2 (3): 149-160.
Article
Google Scholar
Tiburcio RA, Costa GG, Carazzolle MF, Mondego JM, Schuster SC, Carlson JE, Guiltinan MJ, Bailey BA, Mieczkowski P, Meinhardt LW, et al: Genes acquired by horizontal transfer are potentially involved in the evolution of phytopathogenicity in Moniliophthora perniciosa and Moniliophthora roreri, two of the major pathogens of cacao. J Mol Evol. 2010, 70 (1): 85-97. 10.1007/s00239-009-9311-9.
Article
PubMed
CAS
Google Scholar
Gesteira AS, Micheli F, Carels N, Da Silva AC, Gramacho KP, Schuster I, Macedo JN, Pereira GAG, Cascardo JCM: Comparative analysis of expressed genes from cacao meristems infected by Moniliophthora perniciosa. Ann Bot. 2007, 100 (1): 129-140. 10.1093/aob/mcm092.
Article
PubMed
CAS
PubMed Central
Google Scholar
Verica JA, Maximova SN, Strem MD, Carlson JE, Bailey BA, Guiltinan MJ: Isolation of ESTs from cacao (Theobroma cacao L.) leaves treated with inducers of the defense response. Plant Cell Rep. 2004, 23 (6): 404-413. 10.1007/s00299-004-0852-5.
Article
PubMed
CAS
Google Scholar
Bailey BA, Strem MD, Bae H, de Mayolo GA, Guiltinan MJ: Gene expression in leaves of Theobroma cacao in response to mechanical wounding, ethylene, and/or methyl jasmonate. Plant Sci. 2005, 168 (5): 1247-1258. 10.1016/j.plantsci.2005.01.002.
Article
CAS
Google Scholar
Shi Z, Maximova S, Lui Y, Verica J, Guiltinan M: Functional analysis of the Theobroma cacao NPR1 gene in Arabidopsis. BMC Plant Biol. 2010, 10: 248-10.1186/1471-2229-10-248.
Article
PubMed
PubMed Central
Google Scholar
Argout X, Salse J, Aury JM, Guiltinan MJ, Droc G, Gouzy J, Allegre M, Chaparro C, Legavre T, Maximova SN, et al: The genome of Theobroma cacao. Nat Genet. 2011, 43 (2): 101-108. 10.1038/ng.736.
Article
PubMed
CAS
Google Scholar
Argout X, Fouet O, Wincker P, Gramacho K, Legavre T, Sabau X, Risterucci AM, Da Silva C, Cascardo J, Allegre M, et al: Towards the understanding of the cocoa transcriptome: production and analysis of an exhaustive dataset of ESTs of Theobroma cacao L. generated from various tissues and under various conditions. BMC Genomics. 2008, 9: 512-531. 10.1186/1471-2164-9-512.
Article
PubMed
PubMed Central
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol. 1990, 215 (3): 403-410.
Article
PubMed
CAS
Google Scholar
Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32 (5): 1792-1797. 10.1093/nar/gkh340.
Article
PubMed
CAS
PubMed Central
Google Scholar
Mitsuhara I, Ugaki M, Hirochika H, Ohshima M, Murakami T, Gotoh Y, Katayose Y, Nakamura S, Honkura R, Nishimiya S, et al: Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants. Plant Cell Physiol. 1996, 37 (1): 49-59. 10.1093/oxfordjournals.pcp.a028913.
Article
PubMed
CAS
Google Scholar
Hajdukiewicz P, Svab Z, Maliga P: The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol. 1994, 25 (6): 989-994. 10.1007/BF00014672.
Article
PubMed
CAS
Google Scholar
Lin JJ: Electrotransformation of Agrobacterium. Methods Mol Biol. 1995, 47: 171-178.
PubMed
CAS
Google Scholar
Clough SJ, Bent AF: Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998, 16 (6): 735-743. 10.1046/j.1365-313x.1998.00343.x.
Article
PubMed
CAS
Google Scholar
Ossowski S, Schwab R, Weigel D: Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J. 2008, 53 (4): 674-690. 10.1111/j.1365-313X.2007.03328.x.
Article
PubMed
CAS
Google Scholar
Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D: Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell. 2006, 18 (5): 1121-1133. 10.1105/tpc.105.039834.
Article
PubMed
CAS
PubMed Central
Google Scholar
Maximova S, Miller C, de Mayolo Antunez G, Pishak S, Young A, Guiltinan MJ: Stable transformation of Theobroma cacao L. and influence of matrix attachment regions on GFP expression. Plant Cell Rep. 2003, 21 (9): 872-883.
PubMed
CAS
Google Scholar
Maximova SN, Marelli JP, Young A, Pishak S, Verica JA, Guiltinan MJ: Over-expression of a cacao class I chitinase gene in Theobroma cacao L. enhances resistance against the pathogen, Colletotrichum gloeosporioides. Planta. 2006, 224 (4): 740-749. 10.1007/s00425-005-0188-6.
Article
PubMed
CAS
Google Scholar
Wang QQ, Han CZ, Ferreira AO, Yu XL, Ye WW, Tripathy S, Kale SD, Gu BA, Sheng YT, Sui YY, et al: Transcriptional programming and functional interactions within the Phytophthora sojae RXLR effector repertoire. Plant Cell. 2011, 23 (6): 2064-2086. 10.1105/tpc.111.086082.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wheelan SJ, Church DM, Ostell JM: Spidey: a tool for mRNA-to-genomic alignments. Genome Res. 2001, 11 (11): 1952-1957.
PubMed
CAS
PubMed Central
Google Scholar
Rochon A, Boyle P, Wignes T, Fobert PR, Despres C: The coactivator function of Arabidopsis NPR1 requires the core of its BTB/POZ domain and the oxidation of C-terminal cysteines. Plant Cell. 2006, 18 (12): 3670-3685. 10.1105/tpc.106.046953.
Article
PubMed
CAS
PubMed Central
Google Scholar
Stogios PJ, Downs GS, Jauhal JJ, Nandra SK, Prive GG: Sequence and structural analysis of BTB domain proteins. Genome Biol. 2005, 6 (10): R82-10.1186/gb-2005-6-10-r82.
Article
PubMed
PubMed Central
Google Scholar
Li J, Mahajan A, Tsai MD: Ankyrin repeat: a unique motif mediating protein-protein interactions. Biochemistry. 2006, 45 (51): 15168-15178. 10.1021/bi062188q.
Article
PubMed
CAS
Google Scholar
Albagli O, Dhordain P, Deweindt C, Lecocq G, Leprince D: The BTB/POZ domain: a new protein-protein interaction motif common to DNA- and actin-binding proteins. Cell Growth Differ. 1995, 6 (9): 1193-1198.
PubMed
CAS
Google Scholar
Gobena D, Roig J, Galmarini C, Hulvey J, Lamour K: Genetic diversity of Phytophthora capsici isolates from pepper and pumpkin in Argentina. Mycologia. 2012, 104 (1): 102-107. 10.3852/11-147.
Article
PubMed
CAS
Google Scholar
Lamour KH, Mudge J, Gobena D, Hurtado-Gonzales OP, Schmutz J, Kuo A, Miller NA, Rice BJ, Raffaele S, Cano LM, et al: Genome sequencing and mapping reveal loss of heterozygosity as a mechanism for rapid adaptation in the vegetable pathogen Phytophthora capsici. Mol Plant Microbe Interact. 2012, 25 (10): 1350-1360. 10.1094/MPMI-02-12-0028-R.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lamour KH, Stam R, Jupe J, Huitema E: The oomycete broad-host-range pathogen Phytophthora capsici. Mol Plant Pathol. 2012, 13 (4): 329-337. 10.1111/j.1364-3703.2011.00754.x.
Article
PubMed
Google Scholar