Bray E: Plant responses to water deficit. Trends Plant Sci. 1997, 2: 48-54.
Article
Google Scholar
Zhang Q: Strategies for developing Green Super Rice. Proc Natl Acad Sci U S A. 2007, 104: 16402-16409. 10.1073/pnas.0708013104.
Article
PubMed
CAS
PubMed Central
Google Scholar
Franca M, Prados L, Lemos-Filho J, Ranieri B, Vale F: Morphophysiological differences in leaves of Lavoisiera campos-portoana (Melastomataceae) enhance higher drought tolerance in water shortage events. J Plant Res. 2012, 125: 85-92. 10.1007/s10265-011-0416-z.
Article
PubMed
Google Scholar
Yamaguchi-Shinozaki K, Shinozaki K: Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol. 2006, 57: 781-803. 10.1146/annurev.arplant.57.032905.105444.
Article
PubMed
CAS
Google Scholar
Urano K, Maruyama K, Ogata Y, Morishita Y, Takeda M, Sakurai N, Suzuki H, Saito K, Shibata D, Kobayashi M, et al: Characterization of the ABA regulated global responses to dehydration in Arabidopsis by metabolomics. Plant J. 2009, 57: 1065-1078. 10.1111/j.1365-313X.2008.03748.x.
Article
PubMed
CAS
Google Scholar
Rabbani M, Maruyama K, Abe H, Khan M, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K: Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA Gel-Blot analyses. Plant Physiol. 2003, 133: 1755-1767. 10.1104/pp.103.025742.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zheng J, Fu J, Gou M, Huai J, Liu Y, Jian M, Huang Q, Guo X, Dong Z, Wang H, et al: Genome-wide transcriptome analysis of two maize inbred lines under drought stress. Plant Mol Biol. 2010, 72: 407-421. 10.1007/s11103-009-9579-6.
Article
PubMed
CAS
Google Scholar
Aprile A, Mastrangelo A, Leonardis A, Galiba G, Roncaglia E, Ferrari F, Bellis L, Turchi L, Giuliano G, Cattivelli L: Transcriptional profiling in response to terminal drought stress reveals differential responses along the wheat genome. BMC Genomics. 2009, 10: 279-10.1186/1471-2164-10-279.
Article
PubMed
PubMed Central
Google Scholar
Nakashima K, Ito Y, Yamaguchi-Shinozaki K: Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol. 2009, 149: 88-95. 10.1104/pp.108.129791.
Article
PubMed
CAS
PubMed Central
Google Scholar
Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K: ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res. 2011, 124: 509-525. 10.1007/s10265-011-0412-3.
Article
PubMed
CAS
Google Scholar
Liu F, Liu Q, Liang X, Huang H, Zhang S: Morphological, anatomical, and physiological assessment of ramie [Boehmeria Nivea (L.) Gaud.] tolerance to soil drought. Genetic Resources and Crop Evolution. 2005, 52: 497-506. 10.1007/s10722-004-7071-3.
Article
Google Scholar
Liu T, Zhu S, Tang Q, Chen P, Yu Y, Tang S: De novo assembly and characterization of transcriptome using Illumina paired-end sequencing and identification of CesA gene in ramie (Boehmeria nivea L.Gaud). BMC Genomics. 2013, 14: 125-10.1186/1471-2164-14-125.
Article
PubMed
CAS
PubMed Central
Google Scholar
Liu T, Tang Q, Zhu S, Tang S: Analysis of climatic factors causing yield difference in ramie among different eco-regions of Yalley valley. Agricultural Science & Technology. 2011, 12: 745-750.
Google Scholar
Liu T, Zhu S, Fu L, Yu Y, Tang Q, Tang S: Morphological and physiological changes of ramie (Boehmeria nivea L. Gaud) in response to drought stress and GA3 treatment. Russian Journal of Plant Physiology. 2013, 60: 749-755.
Article
CAS
Google Scholar
Meyer E, Aglyamova GV, Wang S, Buchanan-Carter J, Abrego D, Colbourne J, Willis B, Matz M: Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFlx. BMC Genomics. 2009, 10: 219-10.1186/1471-2164-10-219.
Article
PubMed
PubMed Central
Google Scholar
Wang J, Wang W, Li R, Li Y, Tian G, Goodman L, Fan W, Zhang J, Li J, Zhang J, et al: The diploid genome sequence of an Asian individual. Nature. 2008, 456: 60-65. 10.1038/nature07484.
Article
PubMed
CAS
PubMed Central
Google Scholar
Huang Y, Huang T, Wang L: Profiling DNA methylomes from microarray to genome-scale sequencing. Technol Cancer Res Treat. 2010, 9: 139-147.
Article
PubMed
CAS
PubMed Central
Google Scholar
Nobuta K, McCormick K, Nakano M, Meyers BC: Bioinformatics analysis of small RNAs in plants using next generation sequencing technologies. Methods Mol Biol. 2010, 592: 89-106. 10.1007/978-1-60327-005-2_7.
Article
PubMed
CAS
Google Scholar
Barakat A, DiLoreto D, Zhang Y, Smith C, Baier K, Powell W, Wheeler N, Sederoff R, Carlson J: Comparison of the transcriptomes of American chestnut (Castanea dentata) and Chinese chestnut (Castanea mollissima) in response to the chestnut blight infection. BMC Plant Biol. 2009, 9: 51-10.1186/1471-2229-9-51.
Article
PubMed
PubMed Central
Google Scholar
Fahlgren N, Howell M, Kasschau K, Chapman E, Sullivan C, Cumbie J, Givan S, Law T, Grant S, Dang J, et al: High-Throughput Sequencing of Arabidopsis microRNAs: Evidence for Frequent Birth and Death of MIRNA Genes. PLoS ONE. 2007, 2: e29-
Article
Google Scholar
Wang Z, Fang B, Chen J, Zhang X, Luo Z, Huang L, Chen X, Li Y: De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweetpotato (Ipomoea batatas). BMC Genomics. 2010, 11: 726-10.1186/1471-2164-11-726.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wu J, Zhang Y, Zhang H, Huang H, Folta K, Lu J: Whole genome wide expression profiles of Vitis amurensis grape responding to downy mildew by using Solexa sequencing technology. BMC Plant Biol. 2010, 10: 234-10.1186/1471-2229-10-234.
Article
PubMed
PubMed Central
Google Scholar
Eveland A, Satoh-Nagasawa N, Goldshmidt A, Meyer S, Beatty M, Sakai H, Ware D, Jackson D: Digital gene expression signatures for maize development. Plant Physiol. 2010, 154: 1024-1039. 10.1104/pp.110.159673.
Article
PubMed
CAS
PubMed Central
Google Scholar
Morrissy A, Morin R, Delaney A, Zeng T, McDonald H, Jones S, Zhao Y, Hirst M, Marra M: Next-generation tag sequencing for cancer gene expression profiling. Genome Res. 2009, 19: 1825-1835. 10.1101/gr.094482.109.
Article
PubMed
CAS
PubMed Central
Google Scholar
't Hoen P, Ariyurek Y, Thygesen H, Vreugdenhil E, Vossen R, Menezes R, Boer J, Ommen G, Dunnen J: Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms. Nucleic Acids Res. 2008, 36: e141-10.1093/nar/gkn705.
Article
PubMed
PubMed Central
Google Scholar
Wu Y, Deng Z, Lai J, Zhang Y, Yang C, Yin B, Zhao Q, Zhang L, Li Y, Yang C, et al: Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res. 2009, 19: 1279-1290. 10.1038/cr.2009.108.
Article
PubMed
CAS
Google Scholar
Tran LS, Nakashima K, Sakuma Y, Simpson S, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K: Isolation and functional analysis of Arabidopsis stress inducible NAC transcription factors that bind to a drought responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell. 2004, 16: 2481-2498. 10.1105/tpc.104.022699.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L: Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci U S A. 2006, 103: 12987-12992. 10.1073/pnas.0604882103.
Article
PubMed
CAS
PubMed Central
Google Scholar
Jeong J, Kim Y, Baek K, Jung H, Ha S, Choi Y, Kim M, Reuzeau C, Kim J: Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol. 2010, 153: 185-197. 10.1104/pp.110.154773.
Article
PubMed
CAS
PubMed Central
Google Scholar
Nakashima K, Tran L, Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K: Functional analysis of a NAC type transcription factor OsNAC6 involved in abiotic and biotic stress responsive gene expression in rice. Plant J. 2007, 51: 617-630. 10.1111/j.1365-313X.2007.03168.x.
Article
PubMed
CAS
Google Scholar
Zheng X, Chen B, Lu G, Han B: Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun. 2009, 379: 985-989. 10.1016/j.bbrc.2008.12.163.
Article
PubMed
CAS
Google Scholar
Li J, Sima W, Ouyang B, Wang T, Ziaf K, Luo Z, Liu L, Li H, Chen M, Huang Y, et al: Tomato SlDREB gene restricts leaf expansion and internode elongation by downregulating key genes for gibberellin biosynthese. J Exp Bot. 2012, 63: 6407-6420. 10.1093/jxb/ers295.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hauvermale A, Ariizumi T, Steber C: Gibberellin signaling: a theme and variations on DELLA repression. Plant Physiol. 2012, 160: 83-92. 10.1104/pp.112.200956.
Article
PubMed
CAS
PubMed Central
Google Scholar
Sun T: The molecular mechanism and evolution of the review GA–GID1–DELLA signaling module in plants. Curr Biol. 2011, 21: 338-345. 10.1016/j.cub.2011.01.036.
Article
Google Scholar
Achard P, Cheng H, Grauwe L, Decat J, Schoutteten H, Moritz T, Straeten D, Peng JR, Harberd NP: Integration of plant responses to environmentally activated phytohormonal signals. Science. 2006, 311: 91-94. 10.1126/science.1118642.
Article
PubMed
CAS
Google Scholar
Achard P, Renou JP, Berthomé R, Harberd NP, Genschik P: Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Curr Biol. 2008, 18: 656-660. 10.1016/j.cub.2008.04.034.
Article
PubMed
CAS
Google Scholar
Jiang C, Gao X, Liao L, Harberd N, Fu X: Phosphate starvation root architecture and anthocyanin accumulation responses are modulated by the gibberellin-DELLA signaling pathway in Arabidopsis. Plant Physiol. 2007, 145: 1460-1470. 10.1104/pp.107.103788.
Article
PubMed
CAS
PubMed Central
Google Scholar
Audic S, Claverie JM: The significance of digital gene expression profiles. Genome Res. 1997, 7: 986-995.
PubMed
CAS
Google Scholar
Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I: Controlling the false discovery rate in behavior genetics research. Behav Brain Res. 2001, 125: 279-284. 10.1016/S0166-4328(01)00297-2.
Article
PubMed
CAS
Google Scholar
Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262.
Article
PubMed
CAS
Google Scholar
Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B. 1995, 57: 289-300.
Google Scholar