Bolker JA: Model systems in developmental biology. BioEssays. 1995, 17 (5): 451-455. 10.1002/bies.950170513.
PubMed
CAS
Google Scholar
Kellogg EA, Shaffer HB: Model organisms in evolutionary studies. Syst Biol. 1993, 42 (4): 409-414. 10.1093/sysbio/42.4.409.
Google Scholar
Soltis DE, Soltis PS, Albert VA, Oppenheimer DG, de Pamphilis CW, Ma H, Frohlich MW, Theissen G: Missing links: the genetic architecture of flower and floral diversification. Trends Plant Sci. 2002, 7 (1): 22-31. 10.1016/S1360-1385(01)02098-2.
PubMed
CAS
Google Scholar
Pryer KM, Schneider H, Zimmer EA, Banks JA: Deciding among green plants for whole genome studies. Trends Plant Sci. 2002, 7: 550-554. 10.1016/S1360-1385(02)02375-0.
PubMed
CAS
Google Scholar
Kelly L, Leitch I: Exploring giant plant genomes with next-generation sequencing technology. Chromosome Res. 2011, 19 (7): 939-953. 10.1007/s10577-011-9246-z.
PubMed
CAS
Google Scholar
Baum DA, Doebley J, Irish VF, Kramer EM: Response: missing links: the genetic architecture of flower and floral diversification. Trends Plant Sci. 2002, 7 (1): 31-34. 10.1016/S1360-1385(01)02181-1.
CAS
Google Scholar
Jansen RK, Cai Z, Raubeson LA, Daniell H, de Pamphilis CW, Leebens-Mack J, Muller KF, Guisinger-Bellian M, Haberle RC, Hansen AK, et al: Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci U S A. 2007, 104 (49): 19369-19374. 10.1073/pnas.0709121104.
PubMed
CAS
PubMed Central
Google Scholar
Moore MJ, Bell CD, Soltis PS, Soltis DE: Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proc Natl Acad Sci U S A. 2007, 104 (49): 19363-19368. 10.1073/pnas.0708072104.
PubMed
PubMed Central
Google Scholar
Stevens PF: Angiosperm Phylogeny Website Version 9, June 2008 [and more or less continuously updated since]. 2008, http://www.mobot.org/MOBOT/research/APweb/].
Zuccolo A, Bowers J, Estill J, Xiong Z, Luo M, Sebastian A, Goicoechea J, Collura K, Yu Y, Jiao Y, et al: A physical map for the Amborella trichopoda genome sheds light on the evolution of angiosperm genome structure. Genome Biology. 2011, 12 (5): R48. 10.1186/gb-2011-12-5-r48.
PubMed
PubMed Central
Google Scholar
Soltis DE, Albert VA, Leebens-Mack J, Palmer JD, Wing RA, de Pamphilis CW, Ma H, Carlson JE, Altman N, Kim S, et al: The Amborella genome: an evolutionary reference for plant biology. Genome Biology. 2008, 9 (3): 402-407. 10.1186/gb-2008-9-3-402.
PubMed
PubMed Central
Google Scholar
Liang HY, Fang EG, Tomkins JP, Luo MZ, Kudrna D, Kim HR, Arumuganathan K, Zhao SY, Leebens-Mack J, Schlarbaum SE, et al: Development of a BAC library for yellow-poplar (Liriodendron tulipifera) and the identification of genes associated with flower development and lignin biosynthesis. Tree Genet Genomes. 2007, 3 (3): 215-225. 10.1007/s11295-006-0057-x.
Google Scholar
Awad M, Young RE: Post-harvest variation in cellulase, polygalacturonase, and pectinmethylesterase in avocado (Persea americana Mill, cv. Fuerte) fruits in relation to respiration and ethylene production. Plant Physiol. 1979, 64 (2): 306-308. 10.1104/pp.64.2.306.
PubMed
CAS
PubMed Central
Google Scholar
Wanke S, Jaramillo MA, Borsch T, Samain MS, Quandt D, Neinhuis C: Evolution of Piperales-matK gene and trnK intron sequence data reveal lineage specific resolution contrast. Mol Phylogenet Evol. 2007, 42 (2): 477-497. 10.1016/j.ympev.2006.07.007.
PubMed
CAS
Google Scholar
Madrid E, Friedman N: Female gametophyte development in Aristolochia labiata Willd. (Aristolochiaceae). Bot J Linn Soc. 2008, 158 (1): 19-29. 10.1111/j.1095-8339.2008.00820.x.
Google Scholar
Soltis DE, Soltis PE, Endress PK, Chase MW: Phylogeny and Evolution of Angiosperms. 2005, Sunderland, MA: Sinauer Associates
Google Scholar
Mabberley DJ: The Plant Book. Cambridge, England: Cambridge University Press; 1997.
Google Scholar
Wanke S, Gonzalez F, Neinhuis C: Systematics of pipevines: combining morphological and fast-evolving molecular characters to investigate the relationships within subfamily Aristolochioideae (Aristolochiaceae). Int J Plant Sci. 2006, 167 (6): 1215-1227. 10.1086/508024.
CAS
Google Scholar
Endress PK: Angiosperm floral evolution: Morphological developmental framework. Advances in Botanical Research: Incorporating Advances in Plant Pathology. Edited by: Doug S, Pamela S, Jim L-M. London: Academic Press Ltd; 2006: 1-61.
Google Scholar
Endress PK, Igersheim A: Gynoecium structure and evolution in basal angiosperms. Int J Plant Sci. 2000, 161 (6): S211-S223. 10.1086/317572.
Google Scholar
Friedman WE, Williams JH: Developmental evolution of the sexual process in ancient flowering plant lineages. Plant Cell. 2004, 16: S119-S132. 10.1105/tpc.017277.
PubMed
CAS
PubMed Central
Google Scholar
Williams JH, Friedman WE: Identification of diploid endosperm in an early angiosperm lineage. Nature. 2002, 415 (6871): 522-526. 10.1038/415522a.
PubMed
Google Scholar
Floyd SK, Friedman WE: Developmental evolution of endosperm in basal angiosperms: evidence from Amborella (Amborellaceae), Nuphar (Nymphaeaceae), and Illicium (Illiciaceae). Plant Systemat Evol. 2001, 228 (3–4): 153-169.
Google Scholar
Buzgo M, Endress PK: Floral structure and development of Acoraceae and its systematic relationships with basal angiosperms. Int J Plant Sci. 2000, 161 (1): 23-41. 10.1086/314241.
PubMed
Google Scholar
Endress PK: Origins of flower morphology. J Exp Zool. 2001, 291 (2): 105-115. 10.1002/jez.1063.
PubMed
CAS
Google Scholar
Irish VF: Duplication, diversification, and comparative genetics of angiosperm MADS-box genes. Advances in Botanical Research: Incorporating Advances in Plant Pathology. Edited by: Doug S, Pamela S, Jim L-M. London: Academic Press Ltd; 2006: 129-161.
Google Scholar
Endress PK: Diversity and Evolutionary Biology of Tropical Flowers. 1st pbk. ed. (with corrections). Cambridge: Cambridge University Press; 1994.
Google Scholar
Ma H, de Pamphilis C: The ABCs of floral evolution. Cell. 2000, 101 (1): 5-8. 10.1016/S0092-8674(00)80618-2.
PubMed
CAS
Google Scholar
Coen ES, Meyerowitz EM: The war of the whorls: genetic interactions controlling flower development. Nature. 1991, 353 (6339): 31-37. 10.1038/353031a0.
PubMed
CAS
Google Scholar
Theissen G: Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol. 2001, 4 (1): 75-85. 10.1016/S1369-5266(00)00139-4.
PubMed
CAS
Google Scholar
Endress PK: Flower development and evolution viewed from a diversity perspective. Botany and Plant Biology (Abstract 1161): July 9, 2007. Edited by: Doug S, Pamela S, Jim L-M. Chicago, IL USA: American Society of Plant Biologists; 2007.
Google Scholar
Soltis PS, Soltis DE, Kim S, Chanderbali A, Buzgo M: Expression of floral regulators in basal angiosperms and the origin and evolution of ABC-function. Advances in Botanical Research: Incorporating Advances in Plant Pathology. Edited by: Doug S, Pamela S, Jim L-M. London: Academic Press Ltd; 2006: 483-506.
Google Scholar
Buzgo M, Soltis DE, Soltis PS, Ma H: Towards a comprehensive integration of morphological and genetic studies of floral development. Trends Plant Sci. 2004, 9 (4): 164-173. 10.1016/j.tplants.2004.02.003.
PubMed
CAS
Google Scholar
Jansson S, Douglas CJ: Populus: a model system for plant biology. Annu Rev Plant Biol. 2007, 58 (1): 435-458. 10.1146/annurev.arplant.58.032806.103956.
PubMed
CAS
Google Scholar
Albert VA, Soltis DE, Carlson JE, Farmerie WG, Wall PK, Ilut DC, Solow TM, Mueller LA, Landherr LL, Hu Y, et al: Floral gene resources from basal angiosperms for comparative genomics research. BMC Plant Biology. 2005, 5 (1): 15. 10.1186/1471-2229-5-15.
Google Scholar
Wei FS, Wing RA: A fruitful outcome to the papaya genome project. Genome Biol. 2008, 9 (6): 4.
Google Scholar
Neinhuis C, Wanke S, Hilu KW, Muller K, Borsch T: Phylogeny of Aristolochiaceae based on parsimony, likelihood, and Bayesian analyses of trnL-trnF sequences. Plant Systemat Evol. 2005, 250 (1–2): 7-26.
Google Scholar
Bennett M, Leitch I: Angiosperm DNA C-values Database (release 4.0, October 2005). http://data.kew.org/cvalues/homepage.html.
Cui L, Wall PK, Leebens-Mack JH, Lindsay BG, Soltis DE, Doyle JJ, Soltis PS, Carlson JE, Arumuganathan K, Barakat A, et al: Widespread genome duplications throughout the history of flowering plants. Genome Res. 2006, 16 (6): 738-749. 10.1101/gr.4825606.
PubMed
CAS
PubMed Central
Google Scholar
Arabidopsis GI: Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000, 408 (6814): 796-815. 10.1038/35048692.
Google Scholar
International-Rice-Genome-Sequencing-Project: The map-based sequence of the rice genome. Nature. 2005, 436 (7052): 793-800. 10.1038/nature03895.
Google Scholar
Petch T: Notes on Aristolochia. Annals of the Royal Botanic Gardens, Peradeniya. 1924, VIII: 1-108.
Google Scholar
Ohi-Toma T, Sugawara T, Murata H, Wanke S, Neinhuis C, Murata J: Molecular phylogeny of Aristolochia sensu lato (Aristolochiaceae) based on sequences of rbcL, matK, and phyA genes, with special reference to differentiation of chromosome numbers. Syst Bot. 2006, 31 (3): 481-492. 10.1600/036364406778388656.
Google Scholar
Sugawara T: Chromosome number of Saruma henryi Oliver Aristolochiaceae. Bot Mag Tokyo. 1987, 100 (1057): 99-102.
Google Scholar
Müller J, Müller K: TreeGraph: Automated drawing of complex tree figures using an extensible tree description format. Mol Ecol Notes. 2004, 4 (4): 786-788. 10.1111/j.1471-8286.2004.00813.x.
Google Scholar
Maximova S, Miller C, Antunez de Mayolo G, Pishak S, Young A, Guiltinan MJ: Stable transformation of Theobroma cacao L. and influence of matrix attachment regions on GFP expression. Plant Cell Rep. 2003, 21 (9): 872-883.
PubMed
CAS
Google Scholar
Bliss BJ, Landherr L, de Pamphilis CW, Ma H, Hu Y, Maximova SN: Regeneration and plantlet development from somatic tissues of Aristolochia fimbriata. Plant Cell Tiss Org Cult. 2009, 98: 105-114. 10.1007/s11240-009-9543-9.
CAS
Google Scholar
Glass flowers from the Ware collection in the Botanical Museum of Harvard University. New York: Harcourt, Brace and Company; 1940.
Gonzalez F, Stevenson DW: Perianth development and systematics of Aristolochia. Flora. 2000, 195 (4): 370-391.
Google Scholar
Gonzalez F, Stevenson DW: Gynostemium development in Aristolochia (Aristolochiaceae). Bot Jahrb Syst. 2000, 122 (2): 249-291.
Google Scholar
Cubas P, Coen E, Zapater JM: Ancient asymmetries in the evolution of flowers. Curr Biol. 2001, 11 (13): 1050-1052. 10.1016/S0960-9822(01)00295-0.
PubMed
CAS
Google Scholar
Feng X, Zhao Z, Tian Z, Xu S, Luo Y, Cai Z, Wang Y, Yang J, Wang Z, Weng L, et al: Control of petal shape and floral zygomorphy in Lotus japonicus. Proc Natl Acad Sci U S A. 2006, 103 (13): 4970-4975. 10.1073/pnas.0600681103.
PubMed
CAS
PubMed Central
Google Scholar
Dickison WC: Morphology and anatomy of the flower and pollen of Saruma henryi Oliv., a phylogenetic relict of the Aristolochiaceae. Bull Torrey Bot Club. 1992, 119 (4): 392-400. 10.2307/2996727.
Google Scholar
Dickison WC: Stem and Leaf Anatomy of Saruma henryi Oliv., Including Observations on Raylessness in the Aristolochiaceae. Bull Torrey Bot Club. 1996, 123 (4): 261-267. 10.2307/2996773.
Google Scholar
Gonzales F, Rudall P: Structure and development of the ovule and seed in Aristolochiaceae, with particular reference to Saruma. Plant Systemat Evol. 2003, 241: 223-244. 10.1007/s00606-003-0050-x.
Google Scholar
Gonzalez F, Rudall PJ, Furness CA: Microsporogenesis and systematics of Aristolochiaceae. Bot J Linnean Soc. 2001, 137 (3): 221-242. 10.1111/j.1095-8339.2001.tb01119.x.
Google Scholar
Madrid EN, Friedman WE: The developmental basis of an evolutionary diversification of female gametophyte structure in Piper and Piperaceae. Ann Bot. 2009, 103 (6): 869-884. 10.1093/aob/mcp011.
PubMed
PubMed Central
Google Scholar
Gonzalez F: Inflorescence morphology and the systematics of Aristolochiaceae. Syst Geogr Pl. 1999, 68 (1–2): 159-172.
Google Scholar
Irish VF: The evolution of floral homeotic gene function. Bioessays. 2003, 25 (7): 637-646. 10.1002/bies.10292.
PubMed
CAS
Google Scholar
de Craene LPR, Soltis PS, Soltis DE: Evolution of floral structures in basal angiosperms. Int J Plant Sci. 2003, 164 (5): S329-S363. 10.1086/377063.
Google Scholar
Kramer EM, Irish VF: Evolution of the petal and stamen developmental programs: evidence from comparative studies of the lower eudicots and basal angiosperms. Int J Plant Sci. 2000, 161 (6): S29-S40. 10.1086/317576.
Google Scholar
Zhao Y, Wang G, Zhang J, Yang J, Peng S, Gao L, Li C, Hu J, Li D, Gao L: Expressed sequence tags (ESTs) and phylogenetic analysis of floral genes from a paleoherb species, Asarum caudigerum. Ann Bot. 2006, 98 (1): 157-163. 10.1093/aob/mcl081.
PubMed
CAS
PubMed Central
Google Scholar
Leins P, Erbar C: Contribution to floral development in Aristolochiaceae: a link to the monocotyledons. Bot Jahrb Syst. 1985, 107: 343-368.
Google Scholar
Renuka C, Swarupanandan K: Morphology of the flower in Thottea siliquosa and the existence of staminodes in Aristolochiaceae. Blumea. 1986, 31 (2): 313-318.
Google Scholar
Sugawara T: Taxonomic studies of Asarum sensu lato III. Comparative floral anatomy. Bot Mag Tokyo. 1987, 100 (1060): 335-348.
Google Scholar
Leins P, Erbar C, Van Heel WA: Note on the floral development of Thottea Aristolochiaceae. Blumea. 1988, 33 (22): 357-370.
Google Scholar
Jaramillo MA, Kramer EM: APETALA3 and PISTILLATA homologs exhibit novel expression patterns in the unique perianth of Aristolochia (Aristolochiaceae). Evol Dev. 2004, 6 (6): 449-458. 10.1111/j.1525-142X.2004.04053.x.
PubMed
CAS
Google Scholar
Kramer EM, Irish VF: Evolution of genetic mechanisms controlling petal development. Nature. 1999, 399 (6732): 144-148. 10.1038/20172.
PubMed
CAS
Google Scholar
Zahn LM, Leebens-Mack J, de Pamphilis CW, Ma H, Theissen G: To B or not to B a flower: the role of DEFICIENS and GLOBOSA orthologs in the evolution of the angiosperms. J Hered. 2005, 96 (3): 225-240. 10.1093/jhered/esi033.
PubMed
CAS
Google Scholar
Kumar V, Poonam , Prasad AK, Parmar VS: Naturally occurring aristolactams, aristolochic acids and dioxoaporphines and their biological activities. Nat Prod Rep. 2003, 20 (6): 565-583. 10.1039/b303648k.
PubMed
CAS
Google Scholar
Heinrich M, Chan J, Wanke S, Neinhuis C, Simmonds MSJ: Local uses of Aristolochia species and content of nephrotoxic aristolochic acid 1 and 2 - A global assessment based on bibliographic sources. J Ethnopharmacol. 2009, 125 (1): 108-144. 10.1016/j.jep.2009.05.028.
PubMed
CAS
Google Scholar
Pakrashi A, Pakrasi P: Anti-fertility efficacy of the plant Aristolochia indica (Linn) on mouse. Contraception. 1979, 20 (1): 49-54. 10.1016/0010-7824(79)90043-X.
PubMed
CAS
Google Scholar
Shafi PM, Rosamma MK, Jamil K, Reddy PS: Antibacterial activity of the essential oil from Aristolochia indica. Fitoterapia. 2002, 73 (5): 439-441. 10.1016/S0367-326X(02)00130-2.
PubMed
CAS
Google Scholar
Elizabeth KM, Raju CS: Antimicrobial activity of Aristolochia bracteata. Asian J Chem. 2006, 18 (1): 207-211.
CAS
Google Scholar
Broussalis AM, Ferraro GE, Martino VS, Pinzon R, Coussio JD, Alvarez JC: Argentine plants as potential source of insecticidal compounds. J Ethnopharmacol. 1999, 67 (2): 219-223. 10.1016/S0378-8741(98)00216-5.
PubMed
CAS
Google Scholar
Gadhi CA, Benharref A, Jana M, Lozniewski A: Anti-Helicobacter pylori activity of Aristolochia paucinervis Pomel extracts. J Ethnopharmacol. 2001, 75 (2–3): 203-205.
PubMed
CAS
Google Scholar
Gupta RS, Dobhal MP, Dixit VP: Morphometric and biochemical changes in testes of Presbytis entellus entellus Dufresne (Langur monkey) following aristolochic acid administration. Ann Biol (Ludhiana). 1996, 12 (2): 328-334.
Google Scholar
Qiu Q, Liu ZH, Chen HP, Yin HL, Li LS: Long-term outcome of acute renal injury induced by Aristolochia. Acta Pharm Sin. 2000, 21 (12): 1129-1135.
CAS
Google Scholar
Meinl W, Pabel U, Osterloh-Quiroz M, Hengstler JG, Glatt H: Human sulphotransferases are involved in the activation of aristolochic acids and are expressed in renal target tissue. Int J Cancer. 2006, 118 (5): 1090-1097. 10.1002/ijc.21480.
PubMed
CAS
Google Scholar
Otero R, Nunez V, Barona J, Fonnegra R, Jimenez SL, Osorio RG, Saldarriaga M, Diaz A: Snakebites and ethnobotany in the northwest region of Colombia Part III: neutralization of the haemorrhagic effect of Bothrops atrox venom. J Ethnopharmacol. 2000, 73 (1–2): 233-241.
PubMed
CAS
Google Scholar
Hwang MS, Park MS, Moon J-Y, Lee JS, Yum YN, Yoon E, Lee H, Nam KT, Lee BM, Kim SH, et al: Subchronic toxicity studies of the aqueous extract of Aristolochiae fructus in Sprague–Dawley rats. J Toxicol Environ Health. 2006, 69 (24): 2157-2165. 10.1080/15287390600747965.
CAS
Google Scholar
Grollman AP, Shibutani S, Moriya M, Miller F, Wu L, Moll U, Suzuki N, Fernandes A, Rosenquist T, Medverec Z, et al: Aristolochic acid and the etiology of endemic (Balkan) nephropathy. Proc Natl Acad Sci USA. 2007, 104 (29): 12129-12134. 10.1073/pnas.0701248104.
PubMed
CAS
PubMed Central
Google Scholar
Lindner E: Aristolochia lindneri Berger und ihre Bestäubung durch Fliegen. Biol Zbl. 1928, 48 (2): 93-101.
Google Scholar
Hall DW, Brown BV: Pollination of Aristolochia littoralis (Aristolochiales: Aristolochiaceae) by males of Megaselia spp. (Diptera: Phoridae). Ann Entomol Soc Am. 1993, 86 (5): 609-613.
Google Scholar
Wolda H, Sabrosky CW: Insect visitors to two forms of Aristolochia pilosa in Las Cumbres Panama. Biotropica. 1986, 18 (4): 295-299. 10.2307/2388572.
Google Scholar
Lu KL: Pollination biology of Asarum caudatum (Aristolochiaceae) in Northern California. Syst Bot. 1982, 7 (2): 150-157. 10.2307/2418323.
Google Scholar
Oelschlägel B, Gorb S, Wanke S, Neinhuis C: Structure and biomechanics of trapping flower trichomes and their role in pollination biology in Mediterranean Aristolochia plants (Aristolochiaceae). New Phytol. 2009, 184: 988-1002. 10.1111/j.1469-8137.2009.03013.x.
PubMed
Google Scholar
Vogel S: Fungus-gnat flowers mimicking fungi Part 1. Flora. 1978, 167 (3–4): 329-366.
Google Scholar
Sakai S: Aristolochia spp. (Aristolochiaceae) pollinated by flies breeding on decomposing flowers in Panama. Am J Bot. 2002, 89 (3): 527-534. 10.3732/ajb.89.3.527.
PubMed
Google Scholar
Disney RHL, Sakai S: Scuttle flies (Diptera: Phoridae) whose larvae develop in flowers of Aristolochia (Aristolochiaceae) in Panama. Eur J Entomol. 2001, 98 (3): 367-373.
Google Scholar
Burgess KS, Singfield J, Melendez V, Kevan PG: Pollination biology of Aristolochia grandiflora (Aristolochiaceae) in Veracruz, Mexico. Ann Mo Bot Gard. 2004, 91 (2): 346-356.
Google Scholar
Rulik B, Wanke S, Nuss M, Neinhuis C: Pollination of Aristolochia pallida Willd. (Aristolochiaceae) in the Mediterranean. Flora. 2008, 203: 175-184. 10.1016/j.flora.2007.02.006.
Google Scholar
Fordyce JA, Marion ZH, Shapiro AM: Phenological variation in chemical defense of the pipevine swallowtail, Battus philenor. J Chem Ecol. 2005, 31 (12): 2835-2846. 10.1007/s10886-005-8397-9.
PubMed
CAS
Google Scholar
De Morais ABB, Brown KS: Larval foodplant and other effects on troidine guild composition (Papilionidae) in southeastern Brazil. J Res Lepid. 1991, 30 (1–2): 19-37.
Google Scholar
Klitzke CF, Brown KS: The occurrence of aristolochic acids in neotropical troidine swallowtails (Lepidoptera: Papilionidae). Chemoecology. 2000, 10 (2): 99-102. 10.1007/s000490050013.
CAS
Google Scholar
Nishida R, Fukami H: Ecological adaptation of an Aristolochiaceae-feeding swallowtail butterfly Atrophaneura alcinous to aristolochic acids. J Chem Ecol. 1989, 15 (11): 2549-2564. 10.1007/BF01014731.
PubMed
CAS
Google Scholar
Nishida R: Oviposition stimulant of a Zeryntiine swallowtail butterfly, Luehdorfia japonica. Phytochemistry. 1994, 36 (4): 873-877. 10.1016/S0031-9422(00)90454-0.
PubMed
CAS
Google Scholar
Rausher MD: Host plant selection by Battus philenor butterflies: The roles of predation, nutrition, and plant chemistry. Ecol Monogr. 1981, 51 (1): 1-20. 10.2307/2937304.
Google Scholar
Sands DPA, Scott SE, Moffatt R: The threatened Richmond birdwing butterfly (Ornithoptera richmondia (Gray)): a community conservation project. Mem Mus Vic. 1997, 56 (2): 449-453.
Google Scholar
Palacios SM, Maggi ME, Bazan CM, Carpinella MC, Turco M, Munoz A, Alonso RA, Nunez C, Cantero JJ, Defago MT, et al: Screening of Argentinian plants for pesticide activity. Fitoterapia. 2007, 78: 580-584. 10.1016/j.fitote.2007.03.023.
PubMed
Google Scholar
Alexenizer M, Dorn A: Screening of medicinal and ornamental plants for insecticidal and growth regulating activity. J Pest Sci. 2007, 80: 205-215. 10.1007/s10340-007-0173-x.
Google Scholar
Lajide L, Escoubas P, Mizutani J: Antifeedant activity of metabolites of Aristolochia albida against the tobacco cutworm, Spodoptera litura. J Agric Food Chem. 1993, 41 (4): 669-673. 10.1021/jf00028a031.
CAS
Google Scholar
Isnard S, Prosperi J, Wanke S, Wagner S, Trueba S, Frenzke L, Samain M-S, Neinhuis C, Rowe NP: Growth form evolution in angiosperms: patterns of stem development, anatomy, biomechanics and architecture within the Piperales. Int J Plant Sci. 2012, 173 (6): 610-639. 10.1086/665821. In: Special Issue: Major transitions in angiosperm ecology and functional biology (eds. Field T., Edwards E.)
Google Scholar
Lahaye R, Civeyrel L, Speck T, Rowe NP: Evolution of shrub-like growth forms in the lianoid subfamily Secamonoideae (Apocynaceae s.l.) of Madagascar: phylogeny, biomechanics, and development. Am J Bot. 2005, 92: 1381-1396. 10.3732/ajb.92.8.1381.
PubMed
CAS
Google Scholar
Rowe NP, Speck T: Plant growth forms: an ecological and evolutionary perspective. New Phytol. 2005, 166: 61-72. 10.1111/j.1469-8137.2004.01309.x.
PubMed
Google Scholar
Taylor DW, Hickey LJ: An Aptian plant with attached leaves and flowers: implications for angiosperm origin. Science. 1990, 247 (4943): 702-704. 10.1126/science.247.4943.702.
PubMed
CAS
Google Scholar
Taylor DW, Hickey LJ: Phylogenetic evidence for the herbaceous origin of angiosperms. Plant Systemat Evol. 1992, 180 (3–4): 137-156.
Google Scholar
Huber H: Aristolochiaceae. The Families and Genera of Vascular Plants. Edited by: Kubitzki K, Rohwer JG, Bittrich V. Berlin: Springer; 1993: 129-137.
Google Scholar
Behnke HD: Sieve-element plastids and evolution of monocotyledons, with emphasis on Melanthiaceae sensu lato and Aristolochiaceae Asaroideae, a putative dicotyledon sister group. Bot Rev. 2003, 68 (4): 524-544.
Google Scholar
Duvall MR: Seeking the dicot sister group of the monocots. Monocots: Systematics and Evolution Proceedings of the Second International Conference on the Comparative Biology of the Monocots. Edited by: Wilson KL, Morrison DA. Melbourne: CSIRO; 2000: 25-32.
Google Scholar
Leins P, Erbar C: The early pattern of differentiation in the flowers of Saruma henryi Oliv. (Aristolochiaceae). Bot Jahrb Syst. 1995, 117 (3): 365-376.
Google Scholar
Kelly LM: Phylogenetic relationships in Asarum (Aristolochiaceae) based on morphology and ITS sequences. Am J Bot. 1998, 85 (10): 1454-1467. 10.2307/2446402.
PubMed
CAS
Google Scholar
Jones-Rhoades MW, Bartel DP, Bartel B: MicroRNAs and their regulatory roles in plants. Ann Rev Plant Biol. 2006, 57: 19-53. 10.1146/annurev.arplant.57.032905.105218.
CAS
Google Scholar
Barakat A, Wall K, Wang J, Carlson J, Leebens-Mack J, de Pamphilis C: Identification and distribution of microRNAs from a basal eudicot (Eschscholzia californica) and two basal angiosperm species (Nuphar advena and Aristolochia fimbriata). Plant & Animal Genomes XV Conference (Abstract P227: General Comparative): January 13-17, 2007. San Diego, CA: Town & Country Convention Center; 2007.
Google Scholar
Axtell MJ, Snyder JA, Bartell DP: Common functions for diverse small RNAs of land plants. Plant Cell. 2007, 19 (6): 1750-1769. 10.1105/tpc.107.051706.
PubMed
CAS
PubMed Central
Google Scholar
Barakat A, Wall K, Leebens-Mack J, Wang YJ, Carlson JE, Depamphilis CW: Large-scale identification of microRNAs from a basal eudicot (Eschscholzia californica) and conservation in flowering plants. Plant J. 2007, 51: 991-1003. 10.1111/j.1365-313X.2007.03197.x.
PubMed
CAS
Google Scholar
Burch-Smith TM, Anderson JC, Martin GB, Dinesh-Kumar SP: Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant J. 2004, 39 (5): 734-746. 10.1111/j.1365-313X.2004.02158.x.
PubMed
CAS
Google Scholar
Wang W, Tanurdzic M, Luo M, Sisneros N, Kim HR, Weng JK, Kudrna D, Mueller C, Arumuganathan K, Carlson J, et al: Construction of a bacterial artificial chromosome library from the spikemoss Selaginella moellendorffii: a new resource for plant comparative genomics. BMC Plant Biol. 2005, 5 (1): 10. 10.1186/1471-2229-5-10.
PubMed
PubMed Central
Google Scholar
Arumuganathan K, Earle E: Estimation of nuclear DNA content of plants by cell-flow cytometry. Plant Mol Biol Rep. 1991, 9 (3): 229-233. 10.1007/BF02672073.
CAS
Google Scholar
McNeal JR, Leebens-Mack JH, Arumuganathan K, Kuehl JV, Boore JL, de Pamphilis CW: Using partial genomic fosmid libraries for sequencing complete organellar genomes. Biotechniques. 2006, 41 (1): 69-73. 10.2144/000112202.
PubMed
CAS
Google Scholar
Wanke S, Quandt D, Neinhuis C: Universal primers for a large cryptically simple cpDNA microsatellite region in Aristolochia (Aristolochiaceae). Mol Ecol Notes. 2006, 6 (4): 1051-1053. 10.1111/j.1471-8286.2006.01430.x.
CAS
Google Scholar
Müller J, Müller K, Neinhuis C, Quandt D: PhyDE- A phylogenetic data editor. Version 0.92. PhyDE® is a registered trade mark of Jörn Müller. 2007, Program distributed by the authors http://www.phyde.de
Google Scholar
Swofford DL: PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). 40b 10th edition. Sunderland, Massachusetts: Sinauer Associates; 2002.
Google Scholar
Müller K: PRAP - computation of Bremer support for large data sets. Mol Phylogenet Evol. 2004, 31: 780-782. 10.1016/j.ympev.2003.12.006.
PubMed
Google Scholar
Nixon KC: The parsimony ratchet, a new method for rapid parsimony analyses. Cladistics. 1999, 15 (4): 407-414. 10.1111/j.1096-0031.1999.tb00277.x.
Google Scholar
Morrison DA: Increasing the efficiency of searches for the maximum likelihood tree in a phylogenetic analysis of up to 150 nucleotide sequences. Syst Biol. 2007, 56: 988-1010. 10.1080/10635150701779808.
PubMed
CAS
Google Scholar
Carlson JE, Leebens-Mack JH, Wall PK, Zahn LM, Mueller LA, Landherr LL, Hu Y, Ilut DC, Arrington JM, Chiorean S, et al: EST database for early flower development in California poppy (Eschscholzia californica Cham., Papaveraceae) tags over 6000 genes from a basal eudicot. Plant Mol Biol. 2006, 62: 351-369. 10.1007/s11103-006-9025-y.
PubMed
Google Scholar
Chevreux B, Pfisterer T, Drescher B, Driesel AJ, Müller WEG, Wetter T, Suhai S: Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res. 2004, 14 (6): 1147-1159. 10.1101/gr.1917404.
PubMed
CAS
PubMed Central
Google Scholar