Fribourg HA, Hannaway DB, West CP: Tall fescue for the twenty-first Century. 2010, ASA, CSSA, SSSA: Madison, WI
Google Scholar
Schardl CL, Leuchtmann A, Spiering MJ: Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol. 2004, 55: 315-340. 10.1146/annurev.arplant.55.031903.141735.
Article
PubMed
CAS
Google Scholar
Arachevaleta M, Bacon CW, Hoveland CS, Radcliffe DE: Effect of the tall fescue endophyte on plant response to environmental stress. Agron J. 1989, 81: 83-90. 10.2134/agronj1989.00021962008100010015x.
Article
Google Scholar
West CP: Physiology and drought tolerance of endophyte-infected grasses. Biotechnology of Endophytic Fungi of Grasses. Edited by: Bacon CW, White JF. 1994, Boca Raton, FL: CRC Press, 87-99.
Google Scholar
West CP, Izekor E, Turner KE, Elmi AA: Endophyte effects on growth and persistence of tall fescue along a water-supply gradient. Agron J. 1993, 85: 264-270. 10.2134/agronj1993.00021962008500020019x.
Article
Google Scholar
Bacon CW: Abiotic stress tolerances (moisture, nutrients) and photosynthesis in endophyte-infected tall fescue. Agric Ecosyst Environ. 1993, 44: 123-141. 10.1016/0167-8809(93)90042-N.
Article
Google Scholar
Malinowski DP, Belesky DP: Adaptations of endophyte-infected cool-season grasses to environmental stresses: Mechanisms of drought and mineral stress tolerance. Crop Sci. 2000, 40: 923-940. 10.2135/cropsci2000.404923x.
Article
CAS
Google Scholar
Zhang Y, Nan ZB: Growth and anti-oxidative systems changes in Elymus dahuricus is affected by Neotyphodium endophyte under contrasting water availability. J Agron Crop Sci. 2007, 193: 377-386. 10.1111/j.1439-037X.2007.00279.x.
Article
CAS
Google Scholar
Hahn H, McManus MT, Warnstorff K, Monahan BJ, Young CA, Davies E, Tapper BA, Scott B: Neotyphodium fungal endophytes confer physiological protection to perennial ryegrass (Lolium perenne L.) subjected to a water deficit. Environ Exper Bot. 2008, 63: 183-199. 10.1016/j.envexpbot.2007.10.021.
Article
Google Scholar
White RH, Engelke MC, Morton SJ, Johnsoncicalese JM, Ruemmele BA: Acremonium endophyte effects on tall fescue drought tolerance. Crop Sci. 1992, 32: 1392-1396. 10.2135/cropsci1992.0011183X003200060017x.
Article
Google Scholar
Carrow RN: Drought avoidance characteristics of diverse tall fescue cultivars. Crop Sci. 1996, 36: 371-377. 10.2135/cropsci1996.0011183X003600020026x.
Article
Google Scholar
Bayat F, Mirlohi A, Khodambashi M: Effects of endophytic fungi on some drought tolerance mechanisms of tall fescue in a hydroponics culture. Russ J Plant Physiol. 2009, 56: 510-516. 10.1134/S1021443709040104.
Article
CAS
Google Scholar
Hill NS, Pachon JG, Bacon CW: Acremonium coenophialum-mediated short- and long-term drought acclimation in tall fescue. Crop Sci. 1996, 36: 665-672. 10.2135/cropsci1996.0011183X003600030025x.
Article
Google Scholar
Richardson MD, Hoveland CS, Bacon CW: Photosynthesis and stomatal conductance of symbiotic and nonsymbiotic tall fescue. Crop Sci. 1993, 33: 145-149. 10.2135/cropsci1993.0011183X003300010026x.
Article
Google Scholar
Malinowski DP, Alloush GA, Belesky DP: Evidence for chemical changes on the root surface of tall fescue in response to infection with the fungal endophyte Neotyphodium coenophialum. Plant Soil. 1998, 205: 1-12. 10.1023/A:1004331932018.
Article
CAS
Google Scholar
Swarthout D, Harper E, Judd S, Gonthier D, Shyne R, Stowe T, Bultman T: Measures of leaf-level water-use efficiency in drought stressed endophyte infected and non-infected tall fescue grasses. Environ Exper Bot. 2009, 66: 88-93. 10.1016/j.envexpbot.2008.12.002.
Article
Google Scholar
Joost RE, Holder TL: Effect of endophyte infection on ABA content and drought response of tall fescue. Agronomy Abstracts. Madison, WI: American Society of Agronomy: 1994, 140-
Google Scholar
Buck GW, West CP, Elbersen HW: Endophyte effect on drought tolerance in diverse Festuca species. Neotyphodium–Grass Interactions. Edited by: Bacon CW, Hill NS. New York, NY: Plenum Press: 1997,141-143.
Chapter
Google Scholar
Elmi AA, West CP: Endophyte Infection effects on stomatal conductance, osmotic adjustment and drought recovery of tall fescue. New Phytol. 1995, 131: 61-67. 10.1111/j.1469-8137.1995.tb03055.x.
Article
Google Scholar
Chen H, Jiang JG: Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. Environ Rev. 2010, 18: 309-319. 10.1139/A10-014.
Article
Google Scholar
Spollen WG, Nelson CJ: Response of fructan to water deficit in growing leaves of tall fescue. Plant Physiol. 1994, 106: 329-336.
PubMed
CAS
PubMed Central
Google Scholar
Hanson J, Smeekens S: Sugar perception and signaling - an update. Curr Opin Plant Biol. 2009, 12: 562-567. 10.1016/j.pbi.2009.07.014.
Article
PubMed
CAS
Google Scholar
Loescher WH: Physiology and metabolism of sugar alcohols in higher-plants. Physiol Plant. 1987, 70: 553-557. 10.1111/j.1399-3054.1987.tb02857.x.
Article
CAS
Google Scholar
Abernethy GA, McManus MT: Biochemical responses to an imposed water deficit in mature leaf tissue of Festuca arundinacea. Environ Exper Bot. 1998, 40: 17-28. 10.1016/S0098-8472(98)00017-3.
Article
CAS
Google Scholar
Bandurska H, Jóźwiak W: A comparison of the effects of drought on proline accumulation and peroxidases activity in leaves of Festuca rubra L. and Lolium perenne L. Acta Soc Bot Pol. 2010, 79: 111-116. 10.5586/asbp.2010.015.
Article
CAS
Google Scholar
Richardson MD, Chapman GW, Hoveland CS, Bacon CW: Sugar alcohols in endophyte-infected tall fescue under drought. Crop Sci. 1992, 32: 1060-1061. 10.2135/cropsci1992.0011183X003200040045x.
Article
CAS
Google Scholar
Assuero SG, Tognetti JA, Colabelli MR, Agnusdei MG, Petroni EC, Posse MA: Endophyte infection accelerates morpho-physiological responses to water deficit in tall fescue. N Z J Agri Res. 2006, 49: 359-370. 10.1080/00288233.2006.9513726.
Article
Google Scholar
Man D, Bao YX, Han LB, Zhang XZ: Drought tolerance associated with proline and hormone metabolism in two tall fescue cultivars. HortScience. 2011, 46: 1027-1032.
Google Scholar
de Battista J, Bouto J, Bacon C, Siegel M: Rhizome and herbage production of endophyte-removed tall fescue clones and populations. Agron J. 1990, 82: 651-654. 10.2134/agronj1990.00021962008200040001x.
Article
Google Scholar
Bacon C, White J: Stains, media and procedures for analyzing endophytes. Biotechnology of Endophytic Fungi of Grasses. Edited by: Bacon CW, White J. 1994, Boca Raton, FL: CRC Press, 47-56.
Google Scholar
An ZQ, Siegel MR, Hollin W, Tsai HF, Schmidt D, Schardl CL: Relationships among non-Acremonium sp. fungal endophytes in five grass species. Appl Environ Microbiol. 1993, 59: 1540-1548.
PubMed
CAS
PubMed Central
Google Scholar
Takach JE, Mittal S, Swoboda GA, Bright SK, Trammell MA, Hopkins AA, Young CA: Genotypic and chemotypic diversity of Neotyphodium endophytes in tall fescue from Greece. Appl Environ Microbiol. 2012, 78: 5501-5510. 10.1128/AEM.01084-12.
Article
PubMed
CAS
PubMed Central
Google Scholar
Yates SG, Petroski RJ, Powell RG: Analysis of loline alkaloids in endophyte-infected tall fescue by capillary gas-chromatography. J Agri Food Chem. 1990, 38: 182-185. 10.1021/jf00091a040.
Article
CAS
Google Scholar
Dutt JE: Computing probability integral of a general multivariate-T. Biometrika. 1975, 62: 201-205.
Article
Google Scholar
Scheffé H: Analysis of variance. New York: John Wiley & Son, Inc: 1959.
Google Scholar
Burg MB, Ferraris JD: Intracellular organic osmolytes: function and regulation. J Biol Chem. 2008, 283: 7309-7313. 10.1074/jbc.R700042200.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bohnert H, Shen B: Transformation and compatible solutes. Sci Hortic (Amsterdam). 1998, 78: 237-240. 10.1016/S0304-4238(98)00195-2.
Article
Google Scholar
Rodriguez R, Redman R: Balancing the generation and elimination of reactive oxygen species. Proc Natl Acad Sci U S A. 2005, 102: 3175-3176. 10.1073/pnas.0500367102.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ahmad P, Sarwat M, Sharma S: Reactive oxygen species, antioxidants and signaling in plants. J Plant Biol. 2008, 51: 167-173. 10.1007/BF03030694.
Article
CAS
Google Scholar
Hoekstra FA, Buitink J: Mechanisms of plant desiccation tolerance. Trends Plant Sci. 2001, 8: 431-438.
Article
Google Scholar
Morgan J: Osmoregulation and water stress in higher plants. Annu Rev Plant Physiol. 1984, 35: 299-319. 10.1146/annurev.pp.35.060184.001503.
Article
Google Scholar
Alpert P, Oliver MJ: Drying without dying. Desiccation and Survival in Plants. Edited by: Black M, Prichard HW. Wallingford, UK: CAB International 2002,3-43.
Chapter
Google Scholar
Buitink J, Laessens MMAE, Hernmings MA, Hoekstra FA: Influence of water content and temperature on molecular mobility and intracellular glasses in seeds and pollen. Plant Physiol. 1998, 118: 531-541. 10.1104/pp.118.2.531.
Article
PubMed
CAS
PubMed Central
Google Scholar
Rolland F, Moore B, Sheen J: Sugar sensing and signaling in plants. Plant Cell. 2002, 14: 185-205.
Google Scholar
Couee I, Sulmon C, Gouesbet G, El Amrani A: Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot. 2006, 57: 449-459. 10.1093/jxb/erj027.
Article
PubMed
CAS
Google Scholar
Deryabin A, Sinkevich M, Dubinina I, Burakhanov E, Trunova T: Effect of sugars on the development of oxidative stress induced by hypothermia in potato plants expressing yeast invertase gene. Russ J Plant Physiol. 2007, 54: 32-38. 10.1134/S1021443707010050.
Article
CAS
Google Scholar
Parrent JL, James TY, Vasaitis R, Taylor AF: Friend or foe? Evolutionary history of glycoside hydrolase family 32 genes encoding for sucrolytic activity in fungi and its implications for plant-fungal symbioses. BMC Evol Biol. 2009, 9: 148-10.1186/1471-2148-9-148.
Article
PubMed
PubMed Central
Google Scholar
Lam CK, Belanger FC, White JF, Daie J: Mechanism and rate of sugar uptake by Acremonium typhinum, an endophytic fungus infecting Festuca rubra - evidence for presence of a cell wall invertase in endophytic fungi. Mycologia. 1994, 86: 408-415. 10.2307/3760573.
Article
CAS
Google Scholar
Ambrose KV, Belanger FC: SOLiD-SAGE of endophyte-infected red fescue reveals numerous effects on host transcriptome and an abundance of highly expressed fungal secreted proteins. PLoS One. 2012, 7: e53214-10.1371/journal.pone.0053214.
Article
PubMed
CAS
PubMed Central
Google Scholar
Solomon PS, Waters OD, Oliver RP: Decoding the mannitol enigma in filamentous fungi. Trends Microbiol. 2007, 15: 257-262. 10.1016/j.tim.2007.04.002.
Article
PubMed
CAS
Google Scholar
Keller F, Matile P: Storage of sugars and mannitol in petioles of celery leaves. New Phytol. 1989, 113: 291-299. 10.1111/j.1469-8137.1989.tb02406.x.
Article
CAS
Google Scholar
Tarczynski MC, Jensen RG, Bohnert HJ: Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science. 1993, 259: 508-510. 10.1126/science.259.5094.508.
Article
PubMed
CAS
Google Scholar
Hu L, Lu H, Liu QL, Chen XM, Jiang XN: Overexpression of mtlD gene in transgenic Populus tomentosa improves salt tolerance through accumulation of mannitol. Tree Physiol. 2005, 25: 1273-1281. 10.1093/treephys/25.10.1273.
Article
PubMed
CAS
Google Scholar
Chan ZL, Grumet R, Loescher W: Global gene expression analysis of transgenic, mannitol-producing, and salt-tolerant Arabidopsis thaliana indicates widespread changes in abiotic and biotic stress-related genes. J Exp Bot. 2011, 62: 4787-4803. 10.1093/jxb/err130.
Article
PubMed
CAS
PubMed Central
Google Scholar
Sickler CM, Edwards GE, Kiirats O, Gao ZF, Loescher W: Response of mannitol-producing Arabidopsis thaliana to abiotic stress. Funct Plant Biol. 2007, 34: 382-391. 10.1071/FP06274.
Article
CAS
Google Scholar
Pilon-Smits EAH, Terry N, Sears T, Kim H, Zayed A, Hwang S, van Dun K, Voogd E, Verwoerd TC, Krutwagen RWHH, Goddijn OJM: Trehalose-producing transgenic tobacco plants show improved growth performance under drought stress. J Plant Physiol. 1998, 152: 525-532. 10.1016/S0176-1617(98)80273-3.
Article
CAS
Google Scholar
Karim S, Aronsson H, Ericson H, Pirhonen M, Leyman B, Welin B, Mäntylä E, Palva ET, Dijck P, Holmström K-O: Improved drought tolerance without undesired side effects in transgenic plants producing trehalose. Plant Mol Biol. 2007, 64: 371-386. 10.1007/s11103-007-9159-6.
Article
PubMed
CAS
Google Scholar
Garg AK, Kim J-K, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ: Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA. 2002, 99: 15898-15903. 10.1073/pnas.252637799.
Article
PubMed
CAS
PubMed Central
Google Scholar
Redillas MFR, Park S-H, Lee J, Kim Y, Jeong J, Jung H, Bang S, Hahn T-R, Kim J-K: Accumulation of trehalose increases soluble sugar contents in rice plants conferring tolerance to drought and salt stress. Plant Biotechnol Rep. 2012, 6: 89-96. 10.1007/s11816-011-0210-3.
Article
Google Scholar
Romero C, Belles JM, Vaya JL, Serrano R, CulianezMacia FA: Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: Pleiotropic phenotypes include drought tolerance. Planta. 1997, 201: 293-297. 10.1007/s004250050069.
Article
PubMed
CAS
Google Scholar
Yeo ET, Kwon HB, Han SE, Lee JT, Ryu JC, Byun MO: Genetic engineering of drought resistant potato plants by introduction of the trehalose-6-phosphate synthase (TPS1) gene from Saccharomyces cerevisiae. Mol Cells. 2000, 10: 263-268.
PubMed
CAS
Google Scholar
Cortina C, Culianez-Macia FA: Tomato abiotic stress enhanced tolerance by trehalose biosynthesis. Plant Sci. 2005, 169: 75-82. 10.1016/j.plantsci.2005.02.026.
Article
CAS
Google Scholar
Fernandez O, Bethencourt L, Quero A, Sangwan RS, Clement C: Trehalose and plant stress responses: friend or foe?. Trends Plant Sci. 2010, 15: 409-417. 10.1016/j.tplants.2010.04.004.
Article
PubMed
CAS
Google Scholar
Goddijn OJM, Verwoerd TC, Voogd E, Krutwagen PWHH, de Graaf PTHM, Poels J, van Dun K, Ponstein AS, Damm B, Pen J: Inhibition of trehalase activity enhances trehalose accumulation in transgenic plants. Plant Physiol. 1997, 113: 181-190. 10.1104/pp.113.1.181.
Article
PubMed
CAS
PubMed Central
Google Scholar
Eastmond PJ, van Dijken AJH, Spielman M, Kerr A, Tissier AF, Dickinson HG, Jones JDG, Smeekens SC, Graham IA: Trehalose-6-phosphate synthase 1, which catalyses the first step in trehalose synthesis, is essential for Arabidopsis embryo maturation. Plant J. 2002, 29: 225-235. 10.1046/j.1365-313x.2002.01220.x.
Article
PubMed
CAS
Google Scholar
Satoh-Nagasawa N, Nagasawa N, Malcomber S, Sakai H, Jackson D: A trehalose metabolic enzyme controls inflorescence architecture in maize. Nature. 2006, 441: 227-230. 10.1038/nature04725.
Article
PubMed
CAS
Google Scholar
Zhang Y, Primavesi LF, Jhurreea D, Andralojc PJ, Mitchell RA, Powers SJ, Schluepmann H, Delatte T, Wingler A, Paul MJ: Inhibition of SNF1-related protein kinase1 activity and regulation of metabolic pathways by trehalose-6-phosphate. Plant Physiol. 2009, 149: 1860-1871. 10.1104/pp.108.133934.
Article
PubMed
CAS
PubMed Central
Google Scholar
Jiang Y, Chen XM, Liu YJ, Li YT, Zhang HH, Dyson P, Sheng HM, An LZ: The catalytic efficiency of trehalose-6-phosphate synthase is effected by the N-loop at low temperatures. Arch Microbiol. 2010, 192: 937-943. 10.1007/s00203-010-0625-1.
Article
PubMed
CAS
Google Scholar
Paul MJ, Jhurreea D, Zhang Y, Primavesi LF, Delatte T, Schluepmann H, Wingler A: Upregulation of biosynthetic processes associated with growth by trehalose 6-phosphate. Plant Signal Behav. 2010, 5: 386-392. 10.4161/psb.5.4.10792.
Article
PubMed
CAS
PubMed Central
Google Scholar
Delatte TL, Sedijani P, Kondou Y, Matsui M, de Jong GJ, Somsen GW, Wiese-Klinkenberg A, Primavesi LF, Paul MJ, Schluepmann H: Growth arrest by trehalose-6-phosphate: An astonishing case of primary metabolite control over growth by way of the SnRK1 signaling pathway. Plant Physiol. 2011, 157: 160-174. 10.1104/pp.111.180422.
Article
PubMed
CAS
PubMed Central
Google Scholar
Carvalho M: Drought stress and reactive oxygen species. Plant Signal Behav. 2008, 3: 156-165. 10.4161/psb.3.3.5536.
Article
Google Scholar
Gill S, Tuteja N: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010, 48: 909-930. 10.1016/j.plaphy.2010.08.016.
Article
PubMed
CAS
Google Scholar
White JF, Torres MA: Is plant-endophyte defensive mutualism is the result of oxidative stress protection, Review. Physiol Plant. 2010, 138: 440-446. 10.1111/j.1399-3054.2009.01332.x.
Article
PubMed
CAS
Google Scholar
Yoshiba Y, Kiyosue T, Nakashima K, YamaguchiShinozaki K, Shinozaki K: Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol. 1997, 38: 1095-1102. 10.1093/oxfordjournals.pcp.a029093.
Article
PubMed
CAS
Google Scholar
Verbruggen N, Hermans C: Proline accumulation in plants: a review. Amino Acids. 2008, 35: 753-759. 10.1007/s00726-008-0061-6.
Article
PubMed
CAS
Google Scholar
Dickman MB, Chen CB: Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. Proc Natl Acad Sci U S A. 2005, 102: 3459-3464. 10.1073/pnas.0407960102.
Article
PubMed
PubMed Central
Google Scholar
Blankenship JD, Spiering MJ, Wilkinson HH, Fannin FF, Bush LP, Schardl CL: Production of loline alkaloids by the grass endophyte, Neotyphodium uncinatum, in defined media. Phytochemistry. 2001, 58: 395-401. 10.1016/S0031-9422(01)00272-2.
Article
PubMed
CAS
Google Scholar
Schardl CL, Grossman RB, Nagabhyru P, Faulkner JR, Mallik UP: Loline alkaloids: Currencies of mutualism. Phytochemistry. 2007, 68: 980-996. 10.1016/j.phytochem.2007.01.010.
Article
PubMed
CAS
Google Scholar
Blankenship JD, Houseknecht JB, Pal S, Bush LP, Grossman RB, Schardl CL: Biosynthetic precursors of fungal pyrrolizidines, the loline alkaloids. Chembiochem. 2005, 6: 1016-1022. 10.1002/cbic.200400327.
Article
PubMed
CAS
Google Scholar
Zhang DX, Nagabhyru P, Schardl CL: Regulation of a chemical defense against herbivory produced by symbiotic fungi in grass plants. Plant Physiol. 2009, 150: 1072-1082. 10.1104/pp.109.138222.
Article
PubMed
CAS
PubMed Central
Google Scholar
Belesky DP, Stringer WC, Hill NS: Influence of endophyte and water regime upon tall fescue accessions. 1. growth-characteristics. Ann Bot. 1989, 63: 495-503.
Google Scholar
Fernandez O, Theocharis A, Bordiec S, Feil R, Jacquens L, Clement C, Fontaine F, Barka EA: Burkholderia phytofirmans PsJN acclimates grapevine to cold by modulating carbohydrate metabolism. Mol Plant Microbe Interact. 2012, 25: 496-504. 10.1094/MPMI-09-11-0245.
Article
PubMed
CAS
Google Scholar
Theocharis A, Bordiec S, Fernandez O, Paquis S, Dhondt-Cordelier S, Baillieul F, Clement C, Barka EA: Burkholderia phytofirmans PsJN primes Vitis vinifera L. and confers a better tolerance to low nonfreezing temperatures. Mol Plant Microbe Interact. 2012, 25: 241-249. 10.1094/MPMI-05-11-0124.
Article
PubMed
CAS
Google Scholar
Rasmussen S, Parsons AJ, Fraser K, Xue H, Newman JA: Metabolic profiles of Lolium perenne are differentially affected by nitrogen supply, carbohydrate content, and fungal endophyte infection. Plant Physiol. 2008, 146: 1440-1453. 10.1104/pp.107.111898.
Article
PubMed
CAS
PubMed Central
Google Scholar
Rasmussen S, Parsons AJ, Jones CS: Metabolomics of forage plants: a review. Ann Bot. 2012, 110: 1281-1290. 10.1093/aob/mcs023.
Article
PubMed
CAS
PubMed Central
Google Scholar
Chaves M, Maroco J, Pereira J: Understanding plant responses to drought – from genes to the whole plant. Funct Plant Biol. 2003, 30: 239-264. 10.1071/FP02076.
Article
CAS
Google Scholar
Chaves MM, Flexas J, Pinheiro C: Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot. 2009, 103: 551-560.
Article
PubMed
CAS
PubMed Central
Google Scholar