Krapovickas A, Gregory W: Taxonomia del genero Arachis (Leguminosae). Bonplandia. 1994, 8: 1-186.
Google Scholar
Krapovickas A, Gregory W: Taxonomy of the genus Arachis (Leguminosae). Bonplandia. 2007, 16: 1-205.
Google Scholar
Temsch EM, Greilhuber J: Genome size variation in Arachis hypogaea and A. monticola re-evaluated. Genome. 2000, 43: 449-451.
Article
PubMed
CAS
Google Scholar
Bennett MD, Bhandol P, Leitch IJ: Nuclear DNA amounts in angirosperms and their modern uses - 807 new estimates. Ann Bot. 2000, 86: 859-909. 10.1006/anbo.2000.1253.
Article
CAS
Google Scholar
Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, Sasamoto S, Watanabe A, Ono A, Kawashima K, Fujishiro T, Katoh M, Kohara M, Kishida Y, Minami C, Nakayama S, Nakazaki N, Shimizu Y, Shinpo S, Takahashi C, Wada T, Yamada M, Ohmido N, Hayashi M, Fukui K, Baba T, Nakamichi T, Mori H, Tabata S: Genome structure of the legume, Lotus japonicus. DNA Res. 2008, 15: 227-239. 10.1093/dnares/dsn008.
Article
PubMed
CAS
PubMed Central
Google Scholar
Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, et al: Genome sequence of the palaeopolyploid soybean. Nature. 2010, 463: 178-183. 10.1038/nature08670.
Article
PubMed
CAS
Google Scholar
Young ND, Debellé F, Oldroyd GE, Geurts R, Cannon SB, Udvardi MK, Benedito VA, Mayer KF, Gouzy J, Schoof H, Van de Peer Y, Proost S, Cook DR, Meyers BC, Spannagl M, Cheung F, De Mita S, Krishnakumar V, Gundlach H, Zhou S, Mudge J, Bharti AK, Murray JD, Naoumkina MA, Rosen B, Silverstein KA, Tang H, Rombauts S, Zhao PX, Zhou P, et al: The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature. 2011, 480: 520-524.
Article
PubMed
CAS
PubMed Central
Google Scholar
Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA, Donoghue MT, Azam S, Fan G, Whaley AM, Farmer AD, Sheridan J, Iwata A, Tuteja R, Penmetsa RV, Wu W, Upadhyaya HD, Yang SP, Shah T, Saxena KB, Michael T, McCombie WR, Yang B, Zhang G, Yang H, Wang J, Spillane C, Cook DR, May GD, Xu X, et al: Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol. 2012, 30: 83-89.
Article
CAS
Google Scholar
Udall JA, Wendel JF: Polyploidy and crop improvement. Crop Sci. 2006, 46: S3-S14.
Article
Google Scholar
Hammons RO: The Groundnut Crop: A scientific basis for improvement. The origin and history of the groundnut. Edited by: Smartt J. 1994, Chapman and Hall, London, 24-42.
Google Scholar
Koilkonda P, Sato S, Tabata S, Shirasawa K, Hirakawa H, Sakai H, Sasamoto S, Watanabe A, Wada T, Kishida Y, Tsuruoka H, Fujishiro T, Yamada M, Kohara M, Suzuki S, Hasegawa M, Kiyoshima H, Isobe S: Large-scale development of expressed sequence tag-derived simple sequence repeat markers and diversity analysis in Arachis spp. Mol Breed. 2011, 10.1007/s11032-011-9604-8.
Google Scholar
Pandey MK, Monyo E, Ozias-Akins P, Liang X, Guimarães P, Nigam SN, Upadhyaya HD, Janila P, Zhang X, Guo B, Cook DR, Bertioli DJ, Michelmore R, Varshney RK: Advances in Arachis genomics for peanut improvement. Biotechnol Adv. 2011, 30: 639-651.
Article
PubMed
Google Scholar
Burow MD, Simpson CE, Starr JL, Paterson AH: Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (Arachis hypogaea L.): broadening the gene pool of a monophyletic polyploid species. Genetics. 2001, 159: 823-837.
PubMed
CAS
PubMed Central
Google Scholar
Halward T, Stalker HT, Kochert G: Development of an RFLP linkaeg map in diploid peanut species. Theor Appl Genet. 1993, 87: 379-384. 10.1007/BF01184927.
Article
PubMed
CAS
Google Scholar
Proite K, Leal-Bertioli SC, Bertioli DJ, Moretzsohn MC, da Silva FR, Martins NF, Guimarães PM: ESTs from a wild Arachis species for gene discovery and marker development. BMC Plant Biol. 2007, 7: 7-10.1186/1471-2229-7-7.
Article
PubMed
PubMed Central
Google Scholar
Ferguson ME, Burow MD, Schulze SR, Bramel PJ, Paterson AH, Kresovich S, Mitchell S: Microsatellite identification and characterization in peanut (A. hypogaea L.). Theor Appl Genet. 2004, 108: 1064-1070. 10.1007/s00122-003-1535-2.
Article
PubMed
CAS
Google Scholar
He G, Meng R, Newman M, Gao G, Pittman RN, Prakash CS: Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L.). BMC Plant Biol. 2003, 3: 3-10.1186/1471-2229-3-3.
Article
PubMed
PubMed Central
Google Scholar
Moretzsohn MC, Hopkins MS, Mitchell SE, Kresovich S, Valls JF, Ferreira ME: Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome. BMC Plant Biol. 2004, 4: 11-10.1186/1471-2229-4-11.
Article
PubMed Central
Google Scholar
Moretzsohn MC, Leoi L, Proite K, Guimaraes PM, Leal-Bertioli SC, Gimenes MA, Martins WS, Valls JF, Grattapaglia D, Bertioli DJ: A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theor Appl Genet. 2005, 111: 1060-1071. 10.1007/s00122-005-0028-x.
Article
PubMed
CAS
Google Scholar
Naito Y, Suzuki S, Iwata Y, Kuboyama T: Genetic diversity and relationship analysis of peanut germplasm using SSR markers. Breed Sci. 2008, 58: 293-300. 10.1270/jsbbs.58.293.
Article
CAS
Google Scholar
Wang H, Penmetsa RV, Yuan M, Gong L, Zhao Y, Guo B, Farmer AD, Rosen BD, Gao J, Isobe S, Bertioli DJ, Varshney RK, Cook DR, He G: Development and characterization of BAC-end sequence derived SSRs, and their incorporation into a new higher density genetic map for cultivated peanut (Arachis hypogaea L.). BMC Plant Biol. 2012, 12: 10-10.1186/1471-2229-12-10.
Article
PubMed
CAS
PubMed Central
Google Scholar
Leal-Bertioli SC, Jose AC, Alves-Freitas DM, Moretzsohn MC, Guimaraes PM, Nielen S, Vidigal BS, Pereira RW, Pike J, Favero AP, Parniske M, Varshney RK, Bertioli DJ: Identification of candidate genome regions controlling disease resistance in Arachis. BMC Plant Biol. 2009, 9: 112-10.1186/1471-2229-9-112.
Article
PubMed
PubMed Central
Google Scholar
Moretzsohn MC, Barbosa AV, Alves-Freitas DM, Teixeira C, Leal-Bertioli SC, Guimarães PM, Pereira RW, Lopes CR, Cavallari MM, Valls JF, Bertioli DJ, Gimenes MA: A linkage map for the B-genome of Arachis (Fabaceae) and its synteny to the A-genome. BMC Plant Biol. 2009, 9: 40-10.1186/1471-2229-9-40.
Article
PubMed
PubMed Central
Google Scholar
Khedikar YP, Gowda MV, Sarvamangala C, Patgar KV, Upadhyaya HD, Varshney RK: A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.). Theor Appl Genet. 2010, 121: 971-984. 10.1007/s00122-010-1366-x.
Article
PubMed
CAS
PubMed Central
Google Scholar
Varshney RK, Bertioli DJ, Moretzsohn MC, Vadez V, Krishnamurthy L, Aruna R, Nigam SN, Moss BJ, Seetha K, Ravi K, He G, Knapp SJ, Hoisington DA: The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L). Theor Appl Genet. 2009, 118: 729-739. 10.1007/s00122-008-0933-x.
Article
PubMed
CAS
Google Scholar
Ravi K, Vadez V, Isobe S, Mir RR, Guo Y, Nigam SN, Gowda MV, Radhakrishnan T, Bertioli DJ, Knapp SJ: Varshney RK:. Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). Theor Appl Genet. 2011, 122: 1119-1132. 10.1007/s00122-010-1517-0.
Article
PubMed
CAS
PubMed Central
Google Scholar
Foncéka D, Hodo-Abalo T, Rivallan R, Faye I, Sall MN, Ndoye O, Fávero AP, Bertioli DJ, Glaszmann JC, Courtois B, Rami JF: Genetic mapping of wild introgressions into cultivated peanut: a way toward enlarging the genetic basis of a recent allotetraploid. BMC Plant Biol. 2009, 9: 103-10.1186/1471-2229-9-103.
Article
PubMed
PubMed Central
Google Scholar
Gautami B, Pandey MK, Vadez V, Nigam SN, Ratnakumar P, Krishnamurthy L, Radhakrishnan T, Gowda MVC, Narasu ML, Hoisington DA, Knapp SJ, Varshney RK: Quantitative trait locus analysis and construction of consensus genetic map for drought tolerance traits based on three recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.). Mol Breed. 2011, 10.1007/s11032-011-9660-0.
Google Scholar
Hong Y, Chen X, Liang X, Liu H, Zhou G, Li S, Wen S, Holbrook CC, Guo B: A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L.) genome. BMC Plant Biol. 2010, 10: 17-10.1186/1471-2229-10-17.
Article
PubMed
PubMed Central
Google Scholar
Qin H, Feng S, Chen C, Guo Y, Knapp S, Culbreath A, He G, Wang ML, Zhang X, Holbrook CC, Ozias-Akins P, Guo B: An integrated genetic linkage map of cultivated peanut (Arachis hypogaea L.) constructed from two RIL populations. Theor Appl Genet. 2011, 124: 653-664.
Article
PubMed
Google Scholar
Sujay V, Gowda MVC, Pandey MK, Bhat RS, Khedikar YP, Nadaf HL, Gautami B, Sarvamangala C, Lingaraju S, Radhakrishan T, Knapp SJ, Varshney RK: Quantitative trait locus analysis and construction of consensus genetic map for foliar disease resistance based on two recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.). Mol Breed. 2011, 10.1007/s11032-011-9661-z.
Google Scholar
Tang J, Baldwin SJ, Jacobs JM, Linden CG, Voorrips RE, Leunissen JA, van Eck H, Vosman B: Large-scale identification of polymorphic microsatellites using an in silico approach. BMC Bioinformatics. 2008, 9: 374-10.1186/1471-2105-9-374.
Article
PubMed
PubMed Central
Google Scholar
SSRPoly: an efficient tool for polymorphic Simple Sequence Repeat identification. [http://acpfg.imb.uq.edu.au/ssrpoly.php].
Shirasawa K, Hirakawa H, Tabata S, Hasegawa M, Kiyoshima H, Suzuki S, Sasamoto S, Watanabe A, Fujishiro T, Isobe S: Characterization of active miniature inverted-repeat transposable elements in the peanut genome. Theor Appl Genet. 2012, 124: 1429-1438. 10.1007/s00122-012-1798-6.
Article
PubMed
CAS
PubMed Central
Google Scholar
Pandey MK, Gautami B, Jayakumar T, Sriswathi M, Upadhyaya HD, Gowda MVC, Radhakrishnan T, Bertioli DJ, Knapp SJ, Cook DR, Varshney RK: Highly informative genic and genomic SSR markers to facilitate molecular breeding in cultivated groundnut (Arachis hypogaea). Plant Breed. 2012, 131: 139-147. 10.1111/j.1439-0523.2011.01911.x.
Article
CAS
Google Scholar
Holbrook CC, Stalker HT: Plant Breeding Reviews. Volume 22. In Peanutbreeding and genetic resources. Edited by Janick J. New York: John Willey andSons; 2003:297–356.
Google Scholar
Moore KM, Knauft DA: The inheritance of high oleic acid in peanut. J Hered. 1989, 80: 252-253.
Google Scholar
Norden AJ, Gorbet DW, Knauft DA, Young CT: Variability in oil quality among peanut genotypes in the Florida breeding program. Peanut Sci. 1987, 14: 7-11. 10.3146/i0095-3679-14-1-3.
Article
CAS
Google Scholar
Grundy SM: Comparison of monounsaturated fatty acids and carbohydrates for lowering plasma cholesterol. N Engl J Med. 1986, 314: 745-748. 10.1056/NEJM198603203141204.
Article
PubMed
CAS
Google Scholar
Clemente TE, Cahoon EB: Soybean oil: genetic approaches for modification of functionality and total content. Plant Physiol. 2009, 151: 1030-1040. 10.1104/pp.109.146282.
Article
PubMed
CAS
PubMed Central
Google Scholar
Garces R, Mancha M: In vitro oleate desaturase in developing sunflower seeds. Phytochemistry. 1991, 30: 2127-2130. 10.1016/0031-9422(91)83599-G.
Article
CAS
Google Scholar
Lee MS, Guerra DJ: Biochemical characterization of temperature-induced changes in lipid metabolism in a high oleic acid mutant of Brassica rapa. Arch Biochem Biophys. 1994, 315: 203-211. 10.1006/abbi.1994.1491.
Article
PubMed
CAS
Google Scholar
Martin BA, Rinne RW: A comparison of oleic acid metabolism in the soybean (Glycine max [L.] Merr.) genotypes Williams and A5, a mutant with decreased linoleic acid in the seed. Plant Physiol. 1986, 81: 41-44. 10.1104/pp.81.1.41.
Article
PubMed
CAS
PubMed Central
Google Scholar
Barkley NA, Chenault KD, Chamberlin C, Wang ML, Pittman RN: Development of a real-time PCR genotyping assay to identify high oleic acid peanuts (Arachis hypogaea L.). Mol Breed. 2010, 25: 541-548. 10.1007/s11032-009-9338-z.
Article
CAS
Google Scholar
Bruner AC, Jung S, Abbott AG, Powell GL: The naturally occurring high oleate oil character in some peanut varieties results from reduced oleoyl-PC desaturase activity from mutation of aspartate 150 to asparagine. Crop Sci. 2001, 41: 522-526. 10.2135/cropsci2001.412522x.
Article
CAS
Google Scholar
Chu Y, Holbrook C, Ozias-Akins P: Two alleles of ahFAD2B control the high oleic acid trait in cultivated peanut. Crop Sci. 2009, 49: 2029-2036. 10.2135/cropsci2009.01.0021.
Article
CAS
Google Scholar
López Y, Nadaf HL, Smith OD, Connell JP, Reddy AS, Fritz AK: Isolation and characterization of the Δ12-fatty acid desaturase in peanut (Arachis hypogaea L.) and search for polymorphisms for the high oleate trait in Spanish market-type lines. Theor Appl Genet. 2000, 101: 1131-1138. 10.1007/s001220051589.
Article
Google Scholar
López Y, Nadaf HL, Smith OD, Simpson CE, Fritz AK: Expressed variants of Δ12-fatty acid desaturase for the high oleate trait in spanish market-type peanut lines. Mol Breed. 2002, 9: 183-190. 10.1023/A:1019767825486.
Article
Google Scholar
Patel M, Jung S, Moore K, Powell G, Ainsworth C, Abbott A: High-oleate peanut mutants result from a MITE insertion into the FAD2 gene. Theor Appl Genet. 2004, 108: 1492-1502. 10.1007/s00122-004-1590-3.
Article
PubMed
CAS
Google Scholar
Nunome T, Negoro S, Miyatake K, Yamaguchi H, Fukuoka H: A protocol for the construction of microsatellite enriched genomic library. Plant Mol Biol Rep. 2006, 24: 305-312. 10.1007/BF02913457.
Article
CAS
Google Scholar
Sraphet S, Boonchanawiwat A, Thanyasiriwat T, Boonseng O, Tabata S, Sasamoto S, Shirasawa K, Isobe S, Lightfoot DA, Tangphatsornruang S, Triwitayakorn K: SSR and EST-SSR-based genetic linkage map of cassava (Manihot esculenta Crantz). Theor Appl Genet. 2011, 122: 1161-1170. 10.1007/s00122-010-1520-5.
Article
PubMed
Google Scholar
Rice P, Longden I, Bleasby A: EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 2000, 16: 276-277. 10.1016/S0168-9525(00)02024-2.
Article
PubMed
CAS
Google Scholar
Huang X, Madan A: CAP3: a DNA sequence assembly program. Genome Res. 1999, 9: 868-877. 10.1101/gr.9.9.868.
Article
PubMed
CAS
PubMed Central
Google Scholar
Rozen S, Skaletsky H: Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol. 2000, 132: 365-386.
PubMed
CAS
Google Scholar
Guimarães PM, Garsmeur O, Proite K, Leal-Bertioli SC, Seijo G, Chaine C, Bertioli DJ, D'Hont A: BAC libraries construction from the ancestral diploid genomes of the allotetraploid cultivated peanut. BMC Plant Biol. 2008, 8: 14-10.1186/1471-2229-8-14.
Article
PubMed
PubMed Central
Google Scholar
Jung S, Powell G, Moore K, Abbott A: The high oleate trait in the cultivated peanut [Arachis hypogaea L]. II. Molecular basis and genetics of the trait. Mol Gen Genet. 2000, 263: 806-811.
PubMed
CAS
Google Scholar
Jung S, Swift D, Sengoku E, Patel M, Teule F, Powell G, Moore K, Abbott A: The high oleate trait in the cultivated peanut [Arachis hypogaea L.]. I. Isolation and characterization of two genes encoding microsomal oleoyl-PC desaturases. Mol Gen Genet. 2000, 263: 796-805. 10.1007/s004380000244.
Article
PubMed
CAS
Google Scholar
Van Ooijen JW: JoinMapW4, software for the calculation of genetic linkagemaps in experimental populations. Wageningen, Netherlands: Kyazma BV;2006.
Google Scholar
Voorrips RE: MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered. 2002, 93: 77-78. 10.1093/jhered/93.1.77.
Article
PubMed
CAS
Google Scholar
Wang S, Basten CJ, Zeng ZB: Windows QTL cartographer 2.5. Raleigh, NC:Department of Sraristics, North Carolina State University:; 2011.
Google Scholar
Isobe S, Nakaya A, Tabata S: Genotype matrix mapping: searching for quantitative trait loci interactions in genetic variation in complex traits. DNA Res. 2007, 14: 217-225. 10.1093/dnares/dsm020.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kazusa DNA Marker Database.[http://marker.kazusa.or.jp].
Liu B, Watanabe S, Uchiyama T, Kong F, Kanazawa A, Xia Z, Nagamatsu A, Arai M, Yamada T, Kitamura K, Masuta C, Harada K, Abe J: The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1. Plant Physiol. 2010, 153: 198-210. 10.1104/pp.109.150607.
Article
PubMed
CAS
PubMed Central
Google Scholar
Suzuki M, Fujino K, Nakamoto Y, Ishimoto M, Funatsuki H: Fine mapping and development of DNA markers for the qPDH1 locus associated with pod dehiscence in soybean. Mol Breed. 2010, 25: 407-418. 10.1007/s11032-009-9340-5.
Article
CAS
Google Scholar
Watanabe S, Hideshima R, Xia Z, Tsubokura Y, Sato S, Nakamoto Y, Yamanaka N, Takahashi R, Ishimoto M, Anai T, Tabata S, Harada K: Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics. 2009, 182: 1251-1262. 10.1534/genetics.108.098772.
Article
PubMed
CAS
PubMed Central
Google Scholar
Watanabe S, Xia Z, Hideshima R, Tsubokura Y, Sato S, Yamanaka N, Takahashi R, Anai T, Tabata S, Kitamura K, Harada K: A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics. 2011, 188: 395-407. 10.1534/genetics.110.125062.
Article
PubMed
CAS
PubMed Central
Google Scholar
Gondo T, Sato S, Okumura K, Tabata S, Akashi R, Isobe S: Quantitative trait locus analysis of multiple agronomic traits in the model legume Lotus japonicus. Genome. 2007, 50: 627-637. 10.1139/G07-040.
Article
PubMed
Google Scholar