Wendel JF: Genome evolution in polyploids. Plant Mol Biol. 2000, 42: 225-249. 10.1023/A:1006392424384.
Article
PubMed
CAS
Google Scholar
Adams KL, Wendel JF: Polyploidy and genome evolution in plants. Curr Opin Plant Biol. 2005, 8: 135-141. 10.1016/j.pbi.2005.01.001.
Article
PubMed
CAS
Google Scholar
Soltis DE, Soltis PS: Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol. 1999, 14: 348-352. 10.1016/S0169-5347(99)01638-9.
Article
PubMed
Google Scholar
Paterson AH: Polyploidy, evolutionary opportunity, and crop adaptation. Genetica. 2005, 123: 191-196. 10.1007/s10709-003-2742-0.
Article
PubMed
CAS
Google Scholar
Udall JA, Wendel JF: Polyploidy and crop improvement. Crop Sci. 2006, 46: S-3-14.
Article
Google Scholar
Fawcett JA, Maere S, Van de Peer Y: Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event. Proc Natl Acad Sci USA. 2009, 106: 5737-5742. 10.1073/pnas.0900906106.
Article
PubMed
CAS
PubMed Central
Google Scholar
Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, dePamphilis CW, Wall PK, Soltis PS: Polyploidy and angiosperm diversification. Am J Bot. 2009, 96: 336-348. 10.3732/ajb.0800079.
Article
PubMed
Google Scholar
Kochert G, Stalker HT, Gimenes MA, Galgaro ML, Lopes CR, Moore K: RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae). Am J Bot. 1996, 83: 1282-1291. 10.2307/2446112.
Article
CAS
Google Scholar
Dwivedi SL, Bertioli D, Crouch JH, Valls JFM, Upadhyaya HD, Favero AP, Moretzsohn MC, Paterson AH: Peanut. Genome Mapping and Molecular Breeding in Plants. Edited by: Kole C. Springer-Verlag. Berlin, Heidelberg; 2: 2007:115-151. 10.1007/978-3-540-34388-2_3.
Google Scholar
He G, Prakash CS: Identification of polymorphic DNA markers in cultivated peanut (Arachis hypogaea L.). Euphytica. 1997, 97: 143-149. 10.1023/A:1002949813052.
Article
CAS
Google Scholar
Hopkins MS, Casa AM, Wang T, Mitchell SE, Dean RE, Kochert GD, Kresovich S: Discovery and characterization of polymorphic simple sequence repeats (SSRs) in peanut. Crop Sci. 1999, 39: 1243-1247. 10.2135/cropsci1999.0011183X003900040047x.
Article
CAS
Google Scholar
Gimenes M, Hoshino A, Barbosa A, Palmieri D, Lopes C: Characterization and transferability of microsatellite markers of the cultivated peanut (Arachis hypogaea). BMC Plant Biol. 2007, 7: 9-10.1186/1471-2229-7-9.
Article
PubMed
PubMed Central
Google Scholar
Cuc L, Mace E, Crouch J, Quang V, Long T, Varshney R: Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut (Arachis hypogaea). BMC Plant Biol. 2008, 8: 55-10.1186/1471-2229-8-55.
Article
PubMed
PubMed Central
Google Scholar
Liang X, Chen X, Hong Y, Liu H, Zhou G, Li S, Guo B: Utility of EST-derived SSR in cultivated peanut (Arachis hypogaea L.) and Arachis wild species. BMC Plant Biol. 2009, 9: 35-10.1186/1471-2229-9-35.
Article
PubMed
PubMed Central
Google Scholar
Varshney R, Bertioli D, Moretzsohn M, Vadez V, Krishnamurthy L, Aruna R, Nigam S, Moss B, Seetha K, Ravi K, He G, Knapp S, Hoisington D: The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theor Appl Genet. 2008, 118: 729-739.
Article
PubMed
Google Scholar
Hong Y, Chen X, Liang X, Liu H, Zhou G, Li S, Wen S, Holbrook CC, Guo B: A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L.) genome. BMC Plant Biol. 2010, 10: 17-10.1186/1471-2229-10-17.
Article
PubMed
PubMed Central
Google Scholar
Ravi K, Vadez V, Isobe S, Mir RR, Guo Y, Nigam SN, Gowda MVC, Radhakrishnan T, Bertioli DJ, Knapp SJ, Varshney RK: Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). Theor Appl Genet. 2010, 122: 1119-1132.
Article
PubMed
PubMed Central
Google Scholar
Lu J, Pickersgill B: Isozyme variation and species relationships in peanut and its wild relatives (Arachis L.-Leguminosae). Theor Appl Genet. 1993, 85: 550-560.
Article
PubMed
CAS
Google Scholar
Raina SN, Rani V, Kojima T, Ogihara Y, Singh KP, Devarumath RM: RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity, varietal identification, and phylogenetic relationships in peanut (Arachis hypogaea) cultivars and wild species. Genome. 2001, 44: 763-72.
Article
PubMed
CAS
Google Scholar
Gimenes MA, Lopes CR, Galgaro ML, Valls JFM, Kochert G: RFLP analysis of genetic variation in species of section Arachis, genus Arachis (Leguminosae). Euphytica. 2002, 123: 421-429. 10.1023/A:1015033700110.
Article
CAS
Google Scholar
Moretzsohn M, Hopkins M, Mitchell S, Kresovich S, Valls J, Ferreira M: Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome. BMC Plant Biol. 2004, 4: 11-10.1186/1471-2229-4-11.
Article
PubMed Central
Google Scholar
Tallury SP, Hilu KW, Milla SR, Friend SA, Alsaghir M, Stalker HT, Quandt D: Genomic affinities in Arachis section Arachis (Fabaceae): molecular and cytogenetic evidence. Theor Appl Genet. 2005, 111: 1229-1237. 10.1007/s00122-005-0017-0.
Article
PubMed
CAS
Google Scholar
Singh KP, Singh A, Raina SN, Singh AK, Ogihara Y: Ribosomal DNA repeat unit polymorphism and heritability in peanut (Arachis hypogaea L.) accessions and related wild species. Euphytica. 2002, 123: 211-220. 10.1023/A:1014966101927.
Article
CAS
Google Scholar
Seijo G, Lavia GI, Fernandez A, Krapovickas A, Ducasse DA, Bertioli DJ, Moscone EA: Genomic relationships between the cultivated peanut (Arachis hypogaea, Leguminosae) and its close relatives revealed by double GISH. Am J Bot. 2007, 94: 1963-1971. 10.3732/ajb.94.12.1963.
Article
PubMed
Google Scholar
Robledo G, Lavia G, Seijo G: Species relations among wild Arachis species with the A genome as revealed by FISH mapping of rDNA loci and heterochromatin detection. Theor Appl Genet. 2009, 118: 1295-1307. 10.1007/s00122-009-0981-x.
Article
PubMed
CAS
Google Scholar
Robledo G, Seijo G: Species relationships among the wild B genome of Arachis species (section Arachis) based on FISH mapping of rDNA loci and heterochromatin detection: a new proposal for genome arrangement. Theor Appl Genet. 2010, 121: 1033-1046. 10.1007/s00122-010-1369-7.
Article
PubMed
Google Scholar
Milla SR, Isleib TG, Stalker HT: Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers. Genome. 2005, 48: 1-11. 10.1139/g04-089.
Article
PubMed
CAS
Google Scholar
Burow MD, Simpson CE, Faries MW, Starr JL, Paterson AH: Molecular biogeographic study of recently described B- and A-genome Arachis species, also providing new insights into the origins of cultivated peanut. Genome. 2009, 52: 107-119. 10.1139/G08-094.
Article
PubMed
CAS
Google Scholar
Favero AP, Simpson CE, Valls JFM, Vello NA: Study of the evolution of cultivated peanut through crossability studies among Arachis ipaensis, A. duranensis, and A. hypogaea. Crop Sci. 2006, 46: 1546-1552. 10.2135/cropsci2005.09-0331.
Article
Google Scholar
Reddy AS, Reddy LJ, Mallikarjuna N, Abdurahman MD, Reddy YV, Bramel PJ, Reddy DVR: Identification of resistance to peanut bud necrosis virus (PBNV) in wild Arachis germplasm. Ann Appl Biol. 2000, 137: 135-139. 10.1111/j.1744-7348.2000.tb00045.x.
Article
Google Scholar
Sharma SB, Ansari MA, Varaprasad KS, Singh AK, Reddy LJ: Resistance to Meloidogyne javanica in wild Arachis species*. Genet Resour Crop Ev. 1999, 46: 557-568. 10.1023/A:1008754812257.
Article
Google Scholar
Pande S, Rao JN: Resistance of wild Arachis species to late leaf spot and rust in greenhouse trials. Plant Dis. 2001, 85: 851-855. 10.1094/PDIS.2001.85.8.851.
Article
Google Scholar
Dwivedi SL, Pande S, Rao JN, Nigam SN: Components of resistance to late leaf spot and rust among interspecific derivatives and their significance in a foliar disease resistance breeding in groundnut (Arachis hypogaea L.). Euphytica. 2002, 125: 81-88. 10.1023/A:1015707301659.
Article
CAS
Google Scholar
Leal-Bertioli S, Jose AC, Alves-Freitas D, Moretzsohn M, Guimaraes P, Nielen S, Vidigal B, Pereira R, Pike J, Favero A, Parniske M, Varshney R, Bertioli D: Identification of candidate genome regions controlling disease resistance in Arachis. BMC Plant Biol. 2009, 9: 112-10.1186/1471-2229-9-112.
Article
PubMed
PubMed Central
Google Scholar
Simpson CE, Starr JL: Registration of "COAN" Peanut. Crop Sci. 2001, 41: 918-10.2135/cropsci2001.413918x.
Article
Google Scholar
Simpson CE, Starr JL, Church GT, Burow MD, Paterson AH: Registration of "NemaTAM" Peanut. Crop Sci. 2003, 43: 1561-10.2135/cropsci2003.1561.
Article
Google Scholar
Garcia GM, Tallury SP, Stalker HT, Kochert G: Molecular analysis of Arachis interspecific hybrids. Theor Appl Genet. 2006, 112: 1342-1348. 10.1007/s00122-006-0236-z.
Article
PubMed
CAS
Google Scholar
Tanksley SD, McCouch SR: Seed banks and molecular maps: Unlocking genetic potential from the wild. Science. 1997, 277: 1063-1066. 10.1126/science.277.5329.1063.
Article
PubMed
CAS
Google Scholar
Gur A, Zamir D: Unused natural variation can lift yield barriers in plant breeding. PLoS Biol. 2004, 2: e245-10.1371/journal.pbio.0020245.
Article
PubMed
PubMed Central
Google Scholar
Hajjar Hodgkin: The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica. 2007, 156: 1-13. 10.1007/s10681-007-9363-0.
Article
Google Scholar
Tanksley SD, Grandillo S, Fulton TM, Zamir D, Eshed Y, Petiard V, Lopez J, Beck-Bunn T: Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor Appl Genet. 1996, 92: 213-224. 10.1007/BF00223378.
Article
PubMed
CAS
Google Scholar
Swamy BPM, Sarla N: Yield-enhancing quantitative trait loci (QTLs) from wild species. Biotechnol Adv. 2008, 26: 106-120. 10.1016/j.biotechadv.2007.09.005.
Article
PubMed
CAS
Google Scholar
Paterson AH: What has QTL mapping taught us about plant domestication?. New Phytol. 2002, 154: 591-608. 10.1046/j.1469-8137.2002.00420.x.
Article
CAS
Google Scholar
Hammer K: Das domestikationssyndrom. Die Kulturpflanze. 1984, 32: 11-34. 10.1007/BF02098682.
Article
Google Scholar
Harlan JR: Origins and processes of domestication. Grass evolution and domestication. G.P. Chapman. Cambridge University Press; 1992: 159-175.
Google Scholar
Koinange EMK, Singh SP, Gepts PL: Genetic control of the domestication syndrome in common bean. Crop Sci. 1996, 36: 1037-1045. 10.2135/cropsci1996.0011183X003600040037x.
Article
Google Scholar
Burke JM, Tang S, Knapp SJ, Rieseberg LH: Genetic analysis of sunflower domestication. Genetics. 2002, 161: 1257.
PubMed
CAS
PubMed Central
Google Scholar
Gepts P: Crop domestication as a long-term selection experiment. Plant Breed Rev. 2004, 24: 1-44.
Google Scholar
Pickersgill B: Domestication of plants in the Americas: Insights from mendelian and molecular genetics. Ann Bot. 2007, 100: 925-940. 10.1093/aob/mcm193.
Article
PubMed
PubMed Central
Google Scholar
Krapovickas A, Gregory W: Taxonomía del género Arachis (Leguminosae). Bonplandia. 1994, 8: 1-186.
Google Scholar
Foncéka D, Hodo-Abalo T, Rivallan R, Faye I, Sall MN, Ndoye O, Fávero AP, Bertioli DJ, Glaszmann J-C, Courtois B, Rami J-F: Genetic mapping of wild introgressions into cultivated peanut: a way toward enlarging the genetic basis of a recent allotetraploid. BMC Plant Biol. 2009, 9: 103-10.1186/1471-2229-9-103.
Article
PubMed
PubMed Central
Google Scholar
Reddy TY, Reddy VR, Anbumozhi V: Physiological responses of groundnut (Arachis hypogea L.) to drought stress and its amelioration: a critical review. Plant Growth Regul. 2003, 41: 75-88. 10.1023/A:1027353430164.
Article
CAS
Google Scholar
Clavel D, Drame NK, Roy-Macauley H, Braconnier S, Laffray D: Analysis of early responses to drought associated with field drought adaptation in four Sahelian groundnut (Arachis hypogaea L.) cultivars. Environ Exper Bot. 2005, 54: 219-230. 10.1016/j.envexpbot.2004.07.008.
Article
CAS
Google Scholar
Clavel D, Sarr B, Marone E, Ortiz R: Potential agronomic and physiological traits of Spanish groundnut varieties (Arachis hypogaea L.) as selection criteria under end-of-cycle drought conditions. Agronomie. 2004, 24: 101-111. 10.1051/agro:2004006.
Article
Google Scholar
Sarr B, Lecoeur J, Clouvel P: Irrigation scheduling of confectionery groundnut (Arachis hypogeaea L.) in Senegal using a simple water balance model. Agr Water Manage. 2004, 67: 201-220. 10.1016/j.agwat.2004.01.004.
Article
Google Scholar
IBPGR, ICRISAT: Descriptors for groundnut. Rome, Italy and Patancheru, A.P., India: Int. Board of Plant Genetic Resources and Int. Crops Res. Inst. For the Semi-Arid Tropics; 1992.
Google Scholar
Fernandez GCJ: Selection criteria for assessing stress tolerance. International Symposium on Adaptation of Vegetables and Other Food Crops in Temperature and Water Stress. Taïwan: Kuo C.G.,1992:257-269.
Google Scholar
R Development Core Team: R: A Language and Environment for Statistical Computing. Vienna, Austria; 2010.
Google Scholar
Broman KW, Wu H, Sen Ś, Churchill GA: R/qtl: QTL mapping in experimental crosses. Bioinformatics. 2003, 19: 889-890. 10.1093/bioinformatics/btg112.
Article
PubMed
CAS
Google Scholar
Servin B, Dillmann C, Decoux G, Hospital F: MDM: a program to compute fully informative genotype frequencies in complex breeding schemes. J Hered. 2002, 93: 227-8. 10.1093/jhered/93.3.227.
Article
PubMed
CAS
Google Scholar
Churchill GA, Doerge RW: Empirical threshold values for quantitative trait mapping. Genetics. 1994, 138: 963-971.
PubMed
CAS
PubMed Central
Google Scholar
Broman KW, Sen Ś: A Guide to QTL Mapping with R/qtl. Springer Verlag; 2009.
Book
Google Scholar
Sadras VO, Milroy SP: Soil-water thresholds for the responses of leaf expansion and gas exchange: A review. Field Crop Res. 1996, 47: 253-266. 10.1016/0378-4290(96)00014-7.
Article
Google Scholar
Boote KJ: Growth stages of peanut (Arachis hypogaea L.). Peanut Science. 1982, 9: 35-40. 10.3146/i0095-3679-9-1-11.
Article
Google Scholar
Stalker HT: Utilizing Arachis cardenasii as a source of Cercospora leafspot resistance for peanut improvement. Euphytica. 1984, 33: 529-538. 10.1007/BF00021154.
Article
Google Scholar
Halward TM, Wynne JC, Stalker HT: Recurrent selection progress in a population derived from an interspecific peanut cross. Euphytica. 1991, 52: 79-84.
Google Scholar
Garcia GM, Stalker HT, Shroeder E, Kochert G: Identification of RAPD, SCAR, and RFLP markers tightly linked to nematode resistance genes introgressed from Arachis cardenasii into Arachis hypogaea. Genome. 1996, 39: 836-45. 10.1139/g96-106.
Article
PubMed
CAS
Google Scholar
Ndunguru BJ, Ntare BR, Williams JH, Greenberg DC: Assessment of groundnut cultivars for end-of-season drought tolerance in a Sahelian environment. J Agr Sci. 1995, 125: 79-85. 10.1017/S0021859600074529.
Article
Google Scholar
Songsri P, Jogloy S, Kesmala T, Vorasoot N, Akkasaeng C, Patanothai A, Holbrook CC: Heritability of drought resistance traits and correlation of drought resistance and agronomic traits in peanut. Crop Sci. 2008, 48: 2245-2253. 10.2135/cropsci2008.04.0228.
Article
Google Scholar
Burow MD, Simpson CE, Starr JL, Paterson AH: Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (Arachis hypogaea L.). broadening the gene pool of a monophyletic polyploid species. Genetics. 2001, 159: 823-37.
PubMed
CAS
PubMed Central
Google Scholar
Moretzsohn M, Barbosa A, Alves-Freitas D, Teixeira C, Leal-Bertioli S, Guimaraes P, Pereira R, Lopes C, Cavallari M, Valls J, Bertioli D, Gimenes M: A linkage map for the B-genome of Arachis (Fabaceae) and its synteny to the A-genome. BMC Plant Biol. 2009, 9: 40-10.1186/1471-2229-9-40.
Article
PubMed
PubMed Central
Google Scholar
Gao S, Gu YQ, Wu J, Coleman-Derr D, Huo N, Crossman C, Jia J, Zuo Q, Ren Z, Anderson OD, Kong X: Rapid evolution and complex structural organization in genomic regions harboring multiple prolamin genes in polyploid wheat genome. Plant Mol Biol. 2007, 65: 189-203. 10.1007/s11103-007-9208-1.
Article
PubMed
CAS
Google Scholar
Doyle JJ, Flagel LE, Paterson AH, Rapp RA, Soltis DE, Soltis PS, Wendel JF: Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet. 2008, 42: 443-461. 10.1146/annurev.genet.42.110807.091524.
Article
PubMed
CAS
Google Scholar
Adams KL, Cronn R, Percifield R, Wendel JF: Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Natl Acad Sci USA. 2003, 100: 4649-4654. 10.1073/pnas.0630618100.
Article
PubMed
CAS
PubMed Central
Google Scholar
Chaudhary B, Flagel L, Stupar RM, Udall JA, Verma N, Springer NM, Wendel JF: Reciprocal silencing, transcriptional bias and functional divergence of homeologs in polyploid cotton (gossypium). Genetics. 2009, 182: 503-517. 10.1534/genetics.109.102608.
Article
PubMed
CAS
PubMed Central
Google Scholar
Flagel LE, Wendel JF: Evolutionary rate variation, genomic dominance and duplicate gene expression evolution during allotetraploid cotton speciation. New Phytol. 2010, 186: 184-193. 10.1111/j.1469-8137.2009.03107.x.
Article
PubMed
CAS
Google Scholar
Rong J, Feltus FA, Waghmare VN, Pierce GJ, Chee PW, Draye X, Saranga Y, Wright RJ, Wilkins TA, May OL, Smith CW, Gannaway JR, Wendel JF, Paterson AH: Meta-analysis of polyploid cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development. Genetics. 2007, 176: 2577-2588. 10.1534/genetics.107.074518.
Article
PubMed
CAS
PubMed Central
Google Scholar
Sourdille P, Cadalen T, Guyomarc'h H, Snape JW, Perretant MR, Charmet G, Boeuf C, Bernard S, Bernard M: An update of the Courtot × Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet. 2003, 106: 530-538.
PubMed
CAS
Google Scholar
Chu C-G, Xu S, Friesen T, Faris J: Whole genome mapping in a wheat doubled haploid population using SSRs and TRAPs and the identification of QTL for agronomic traits. Mol Breeding. 2008, 22: 251-266. 10.1007/s11032-008-9171-9.
Article
CAS
Google Scholar
Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusić D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti M-C, Hollington PA, Aragués R, Royo A, Dodig D: A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet. 2005, 110: 865-880. 10.1007/s00122-004-1902-7.
Article
PubMed
CAS
Google Scholar
Grandillo S, Ku HM, Tanksley SD: Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theor Appl Genet. 1999, 99: 978-987. 10.1007/s001220051405.
Article
CAS
Google Scholar
Briggs WH, McMullen MD, Gaut BS, Doebley J: Linkage mapping of domestication loci in a large maize teosinte backcross resource. Genetics. 2007, 177: 1915-1928. 10.1534/genetics.107.076497.
Article
PubMed
PubMed Central
Google Scholar
Sweeney M, McCouch S: The complex history of the domestication of rice. Ann Bot. 2007, 100: 951-957. 10.1093/aob/mcm128.
Article
PubMed
PubMed Central
Google Scholar
Peng J, Ronin Y, Fahima T, Röder MS, Li Y, Nevo E, Korol A: Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc Natl Acad Sci USA. 2003, 100: 2489-2494. 10.1073/pnas.252763199.
Article
PubMed
CAS
PubMed Central
Google Scholar
Paterson AH, Lin Y-R, Li Z, Schertz KF, Doebley JF, Pinson SRM, Liu S-C, Stansel JW, Irvine JE: Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science. 1995, 269: 1714-1718. 10.1126/science.269.5231.1714.
Article
PubMed
CAS
Google Scholar
Doganlar S, Frary A, Daunay M-C, Lester RN, Tanksley SD: Conservation of gene function in the Solanaceae as revealed by comparative mapping of domestication Traits in Eggplant. Genetics. 2002, 161: 1713-1726.
PubMed
CAS
PubMed Central
Google Scholar
Weeden NF: Genetic changes accompanying the domestication of Pisum sativum: Is there a common genetic basis to the "domestication syndrome" for legumes?. Ann Bot. 2007, 100: 1017-1025. 10.1093/aob/mcm122.
Article
PubMed
CAS
PubMed Central
Google Scholar
Gondo T, Sato S, Okumura K, Tabata S, Akashi R, Isobe S: Quantitative trait locus analysis of multiple agronomic traits in the model legume Lotus japonicus. Genome. 2007, 50: 627-637. 10.1139/G07-040.
Article
PubMed
Google Scholar
Hougaard BK, Madsen LH, Sandal N, de Carvalho Moretzsohn M, Fredslund J, Schauser L, Nielsen AM, Rohde T, Sato S, Tabata S, Bertioli DJ, Stougaard J: Legume anchor markers link syntenic regions between Phaseolus vulgaris, Lotus japonicus, Medicago truncatula and Arachis. Genetics. 2008, 179: 2299-2312. 10.1534/genetics.108.090084.
Article
PubMed
PubMed Central
Google Scholar
Bertioli D, Moretzsohn M, Madsen L, Sandal N, Leal-Bertioli S, Guimaraes P, Hougaard B, Fredslund J, Schauser L, Nielsen A, Sato S, Tabata S, Cannon S, Stougaard J: An analysis of synteny of Arachis with Lotus and Medicago sheds new light on the structure, stability and evolution of legume genomes. BMC Genomics. 2009, 10: 45-10.1186/1471-2164-10-45.
Article
PubMed
PubMed Central
Google Scholar