Frank RA, Leeper FJ, Luisi BF: Structure, mechanism and catalytic duality of thiamine-dependent enzymes. Cell Mol Life Sci. 2007, 64: 892-905. 10.1007/s00018-007-6423-5.
Article
PubMed
CAS
Google Scholar
Jurgenson CT, Begley TP, Ealick SE: The structural and biochemical foundations of thiamin biosynthesis. Ann Rev Biochem. 2009, 78: 569-603. 10.1146/annurev.biochem.78.072407.102340.
Article
PubMed
CAS
Google Scholar
Kowalska E, Kozik A: The genes and enzymes involved in the biosynthesis of thiamin and thiamin diphosphate in yeasts. Cell Mol Biol Lett. 2008, 13: 271-282. 10.2478/s11658-007-0055-5.
Article
PubMed
CAS
Google Scholar
Goyer A: Thiamine in plants: aspects of its metabolism and functions. Phytochemistry. 2010, 71: 1615-1624. 10.1016/j.phytochem.2010.06.022.
Article
PubMed
CAS
Google Scholar
Rapala-Kozik M: Vitamine B1 (thiamine): a cofactor for enzymes involved in the main metabolic pathways and an environmental stress protectant. Adv Bot Res. 2011, 58: 37-90.
Article
CAS
Google Scholar
Raschke M, Burkle L, Muller N, Nunes-Nesi A, Fernie AR, Arigoni D, Amrhein N, Fitzpatrick TB: Vitamin B1 biosynthesis in plants requires the essential iron sulfur cluster protein, THIC. Proc Natl Acad Sci USA. 2007, 104: 19637-19642. 10.1073/pnas.0709597104.
Article
PubMed
CAS
PubMed Central
Google Scholar
Chatterjee A, Schroeder FC, Jurgenson CT, Ealick SE, Begley TP: Biosynthesis of the thiamin-thiazole in eukaryotes: identification of a thiazole tautomer intermediate. J Am Chel Soc. 2008, 130: 1394-11398.
Google Scholar
Machado CR, de Oliveira RL, Boiteux S, Praekelt UM, Meacock PA, Menck CF: Thi1, a thiamine biosynthetic gene in Arabidopsis thaliana, complements bacterial defects in DNA repair. Plant Mol Biol. 1996, 31: 585-593. 10.1007/BF00042231.
Article
PubMed
CAS
Google Scholar
Belanger F, Leustek T, Chu B, Kirz A: Evidence for the thiamine biosynthetic pathway in higher plant plastids and its developmental regulation. Plant Mol Biol. 1995, 29: 809-821. 10.1007/BF00041170.
Article
PubMed
CAS
Google Scholar
Ajjawi I, Tsegaye Y, Shintani D: Determination of the genetic, molecular, and biochemical basis of the Arabidopsis thaliana thiamin auxotroph th1. Arch Biochem Biophys. 2007, 459: 107-114. 10.1016/j.abb.2006.11.011.
Article
PubMed
CAS
Google Scholar
Rapala-Kozik M, Olczak M, Ostrowska K, Starosta A, Kozik A: Molecular characterization of the thi3 gene involved in thiamine biosynthesis in Zea mays: cDNA sequence and enzymatic and structural properties of the recombinant bifunctional protein with 4-amino-5-hydroxymethyl-2-methylpyrimidine (phosphate) kinase and thiamine monophosphate synthase activities. Biochem J. 2007, 408: 149-159. 10.1042/BJ20070677.
Article
PubMed
CAS
PubMed Central
Google Scholar
Rapala-Kozik M, Golda A, Kujda M: Enzymes that control the thiamine diphosphate pool in plant tissues. Properties of thiamine pyrophosphokinase and thiamine-(di)phosphate phosphatase purified from Zea mays seedlings. Plant Physiol Biochem. 2009, 47: 237-242. 10.1016/j.plaphy.2008.12.015.
Article
PubMed
CAS
Google Scholar
Julliard JH, Douce R: Biosynthesis of the thiazole moiety of thiamin (vitamin B1) in higher plant chloroplasts. P Natl Acad Sci USA. 1991, 88: 2042-2045. 10.1073/pnas.88.6.2042.
Article
CAS
Google Scholar
Ajjawi I, Rodriguez Milla MA, Cushman J, Shintani DK: Thiamin pyrophosphokinase is required for thiamin cofactor activation in Arabidopsis. Plant Mol Biol. 2007, 65: 151-162. 10.1007/s11103-007-9205-4.
Article
PubMed
CAS
Google Scholar
Bocobza S, Aharoni A: Switching the light on plant riboswitches. Trends Plant Sci. 2008, 13: 526-533. 10.1016/j.tplants.2008.07.004.
Article
PubMed
CAS
Google Scholar
Ribeiro DT, Farias LP, de Almeida JD, Kashiwabara PM, Ribeiro AF, Silva-Filho MC, Menck CF, Van Sluys MA: Functional characterization of the thi1 promoter region from Arabidopsis thaliana. J Exp Bot. 2005, 56: 1797-1804. 10.1093/jxb/eri168.
Article
PubMed
CAS
Google Scholar
Ferreira S, Hjerno K, Larsen M, Wingsle G, Larsen P, Fey S, Roepstorff P, Salome Pais M: Proteome profiling of Populus euphratica Oliv. upon heat stress. Ann Bot. 2006, 98: 361-377. 10.1093/aob/mcl106.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wong CE, Li Y, Labbe A, Guevara D, Nuin P, Whitty B, Diaz C, Golding GB, Gray GR, Weretilnyk EA, Griffith M, Moffatt BA: Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in Thellungiella, a close relative of Arabidopsis. Plant Physiol. 2006, 140: 1437-1450. 10.1104/pp.105.070508.
Article
PubMed
CAS
PubMed Central
Google Scholar
Rapala-Kozik M, Kowalska E, Ostrowska K: Modulation of thiamine metabolism in Zea mays seedlings under conditions of abiotic stress. J Exp Bot. 2008, 59: 4133-4143. 10.1093/jxb/ern253.
Article
PubMed
CAS
Google Scholar
Tunc-Ozdemir M, Miller G, Song L, Kim J, Sodek A, Koussevitzky S, Misra AN, Mittler R, Shintani D: Thiamin confers enhanced tolerance to oxidativestress in Arabidopsis. Plant Physiol. 2009, 151: 421-432. 10.1104/pp.109.140046.
Article
PubMed
CAS
PubMed Central
Google Scholar
Taylor NL, Tan Y-F, Jacoby RP, Millar AH: Abiotic environmental stress induced changes in the Arabidopsis thaliana chloroplast, mitochondria and peroxisome proteomes. J Proteomics. 2009, 72: 367-378. 10.1016/j.jprot.2008.11.006.
Article
PubMed
CAS
Google Scholar
Baena-Gonzalez E: Energy signaling in the regulation of gene expression during stress. Mol Plant. 2010, 3: 300-313. 10.1093/mp/ssp113.
Article
PubMed
CAS
Google Scholar
Baxter CJ, Redestig H, Schauer N, Repsilber D, Patil KR, Nielsen J, Selbig J, Liu J, Fernie AR, Sweetlove LJ: The metabolic response of heterotrophic Arabidopsis cells to oxidative stress. Plant Physiol. 2007, 143: 312-325.
Article
PubMed
CAS
PubMed Central
Google Scholar
Williams TC, Poolman MG, Howden AJ, Schwarzlander M, Fell DA, Ratcliffe RG, Sweetlove LJ: A genome-scale metabolic model accurately predicts fluxes in central carbon metabolism under stress conditions. Plant Physiol. 2010, 154: 311-323. 10.1104/pp.110.158535.
Article
PubMed
CAS
PubMed Central
Google Scholar
Obata T, Matthes A, Koszior S, Lehmann M, Araújo WL, Bock R, Sweetlove LJ, Fernie AR: Alteration of mitochondrial protein complexes in relation to metabolic regulation under short-term oxidative stress in Arabidopsis seedlings. Phytochemistry. 2011, 72: 1081-1091. 10.1016/j.phytochem.2010.11.003.
Article
PubMed
CAS
Google Scholar
Munns R: Comparative physiology of salt and water stress. Plant Cell Einviron. 2002, 25: 239-250. 10.1046/j.0016-8025.2001.00808.x.
Article
CAS
Google Scholar
Munns R, Passioura JB, Guo J, Chazen O, Cramer GR: Water relations and leaf expansion: importance of time scale. J Exp Bot. 2000, 51: 1495-1504. 10.1093/jexbot/51.350.1495.
Article
PubMed
CAS
Google Scholar
Sweetlove LJ, Heazlewood JL, Herald V, Holtzapffel R, Day DA, Leaver CJ, Millar AH: The impact of oxidative stress on Arabidopsis mitochondria. Plant J. 2002, 32: 891-904. 10.1046/j.1365-313X.2002.01474.x.
Article
PubMed
CAS
Google Scholar
Taylor NL, Day DA, Millar AH: Targets of stress-induced oxidative damage in plant mitochondria and their impact on cell carbon/nitrogen metabolism. J Exp Bot. 2004, 55: 1-10.
Article
PubMed
CAS
Google Scholar
Bunik VI, Fernie AR: Metabolic control exerted by the 2-oxoglutarate dehydrogenase reaction: a cross-kingdom comparison of the crossroad between energy production and nitrogen assimilation. Biochem J. 2009, 422: 405-421. 10.1042/BJ20090722.
Article
PubMed
CAS
Google Scholar
Raines CA: The Calvin cycle revisited. Photosynth Res. 2003, 75: 1-10. 10.1023/A:1022421515027.
Article
PubMed
CAS
Google Scholar
Henkes S, Sonnewald U, Badur R, Flachmann R, Stitt M: A small decrease of plastid transketolase activity in antisense tobacco transformants has dramatic effects on photosynthesis and phenylpropanoid metabolism. Plant Cell. 2001, 13: 535-551.
Article
PubMed
CAS
PubMed Central
Google Scholar
Arora A, Sairam RK, Srivastava GC: Oxidative stress and antioxidative system in plants. Curr Sci. 2002, 82: 1227-1238.
CAS
Google Scholar
Couée I, Sulmon C, Gouesbet G, El Amrani A: Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot. 2006, 57: 449-459. 10.1093/jxb/erj027.
Article
PubMed
Google Scholar
Valderrama R, Corpas FJ, Carreras A, Gómez-Rodríguez MV, Chaki M, Pedrajas JR, Fernández-Ocaña A, Del Río LA, Barroso JB: A dehydrogenase-mediated recycling of NADPH is a key antioxidant system against salt-induced oxidative stress in olive plants. Plant Cell Environ. 2006, 29: 1449-1459. 10.1111/j.1365-3040.2006.01530.x.
Article
PubMed
CAS
Google Scholar
Estevez JM, Cantero A, Reindl A, Reichler S, Leon P: 1-Deoxy-D-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. J Biol Chem. 2001, 276: 22901-22909. 10.1074/jbc.M100854200.
Article
PubMed
CAS
Google Scholar
Lois LM, Rodriguez-Concepcion M, Gallego F, Campos N, Boronat A: Carotenoid biosynthesis during tomato fruit development: regulatory role of 1-deoxy-D-xylulose5-phosphate synthase. Plant J. 2000, 22: 503-513. 10.1046/j.1365-313x.2000.00764.x.
Article
PubMed
CAS
Google Scholar
Paterami I, Kanellis AK: Stress and developmental responses of terpenoid osynthetic genes in Cistus creticus subsp. creticus. Plant Cell Rep. 2010, 29: 629-641. 10.1007/s00299-010-0849-1.
Article
Google Scholar
Meier S, Tzfadia O, Vallabhaneni R, Gehring C, Wurtzel ET: A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana. BMC Syst Biol. 2011, 19: 77.
Article
Google Scholar
Zhu JK: Salt and drought stress signal transduction in plants. Ann Rev Plant Biol. 2002, 53: 247-273. 10.1146/annurev.arplant.53.091401.143329.
Article
CAS
Google Scholar
Cordoba E, Porta H, Arroyo A, San Román C, Medina L, Rodríguez-Concepción M, León P: Functional characterization of the three genes encoding 1-deoxy-D-xylulose 5-phosphate synthase in maize. J Exp Bot. 2011, 62: 2023-2038. 10.1093/jxb/erq393.
Article
PubMed
CAS
Google Scholar
Santner A, Estelle M: Recent advances and emerging trends in plant hormone signalling. Nature. 2009, 459: 1071-1078. 10.1038/nature08122.
Article
PubMed
CAS
Google Scholar
Peleg Z, Blumwald E: Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol. 2011, 14: 290-295. 10.1016/j.pbi.2011.02.001.
Article
PubMed
CAS
Google Scholar
Oh KJ, Park YS, Lee KA, Chung YJ, Cho TJ: Molecular characterization of a thiJ-like gene in Chinese cabbage. J Biochem Mol Biol. 2004, 37: 343-350. 10.5483/BMBRep.2004.37.3.343.
Article
PubMed
CAS
Google Scholar
Ahn IP, Kim S, Lee YH: Vitamin B1 functions as an activator of plant disease resistance. Plant Physiol. 2005, 138: 1505-1515. 10.1104/pp.104.058693.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bari R, Jones JD: Role of plant hormones in plant defense responses. Plant Mol Biol. 2009, 69: 473-488. 10.1007/s11103-008-9435-0.
Article
PubMed
CAS
Google Scholar
Walia H, Wilson C, Wahid A, Condamine P, Cui X, Close TJ: Expression analysis of barley (Hordeum vulgare L.) during salinity stress. Funct Integr Genomics. 2006, 6: 143-156. 10.1007/s10142-005-0013-0.
Article
PubMed
CAS
Google Scholar
Higo K, Ugawa Y, Iwamoto M, Korenaga T: Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res. 1999, 27: 297-300. 10.1093/nar/27.1.297.
Article
PubMed
CAS
PubMed Central
Google Scholar
Vandepoele K, Quimbaya M, Casneuf T, De Veylder L, Van de Peer Y: Unraveling transcriptional control in Arabidopsis using cis-regulatory elements and coexpression networks. Plant Physiol. 2009, 50: 535-546.
Article
Google Scholar
Nemhauser JL, Hong F, Chory J: Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell. 2006, 126: 467-475. 10.1016/j.cell.2006.05.050.
Article
PubMed
CAS
Google Scholar
Arbona V, Argamasilla R, Gómez-Cadenas A: Common and divergent physiological, hormonal and metabolic responses of Arabidopsis thaliana and Thellungiella halophila to water and salt stress. J Plant Physiol. 2010, 167: 342-1350.
Article
Google Scholar
Divi UK, Rahman T, Krishna P: Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biol. 2010, 10: 151-10.1186/1471-2229-10-151.
Article
PubMed
PubMed Central
Google Scholar
Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR: Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol. 2010, 61: 651-79. 10.1146/annurev-arplant-042809-112122.
Article
PubMed
CAS
Google Scholar
Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K: ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res. 2011, 124: 509-525. 10.1007/s10265-011-0412-3.
Article
PubMed
CAS
Google Scholar
Prasad TK, Anderson MD, Stewart CR: Acclimation, Hydrogen Peroxide, and Abscisic Acid Protect Mitochondria against Irreversible Chilling Injury in Maize Seedlings. Plant Physiol. 1994, 105: 619-627.
PubMed
CAS
PubMed Central
Google Scholar
Millar AH, Heazlewood JL: Genomic and proteomic analysis of mitochondrial carrier proteins in Arabidopsis. Plant Physiol. 2003, 131: 443-453. 10.1104/pp.009985.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kharenko OA, Boyd J, Nelson KM, Abrams SR, Loewen MC: Identification and characterization of interactions between abscisic acid and mitochondrial adenine nucleotide translocators. Biochem J. 2011, 437: 117-123. 10.1042/BJ20101898.
Article
PubMed
CAS
Google Scholar
Bartels D, Sour E: Molecular responses of higher plants to dehydration. Plant responses to abiotic stress. Edited by: Heribert H, Shinozaki K. Springer, Berlin;2004:13-37.
Google Scholar
Shinozaki K, Yamaguchi-Shinozaki K, Seki M: Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol. 2003, 6: 410-417. 10.1016/S1369-5266(03)00092-X.
Article
PubMed
CAS
Google Scholar
Barrero JM, Piqueras P, González-Guzmán M, Serrano R, Rodríguez PL, Ponce MR, Micol JL: A mutational analysis of the ABA1 gene of Arabidopsis thaliana highlights the involvement of ABA in vegetative development. J Exp Bot. 2005, 56: 2071-2083. 10.1093/jxb/eri206.
Article
PubMed
CAS
Google Scholar
Hu ML, Chen YK, Lin YF: The antioxidant and prooxidant activity of some B vitamins and vitamin-like compounds. Chem Bio Interact. 1995, 97: 63-73. 10.1016/0009-2797(95)03608-8.
Article
CAS
Google Scholar
Lukienko PI, Mel'nichenko NG, Zverinskii IV, Zabrodskaya SV: Antioxidant properties of thiamine. Bull Exp Biol Med. 2000, 130: 874-876.
PubMed
CAS
Google Scholar
Bettendorff L, Wins P: Thiamin diphosphate in biological chemistry: new aspects of thiamin metabolism, especially triphosphate derivatives acting other than as cofactors. FEBS J. 2009, 276: 2917-2925. 10.1111/j.1742-4658.2009.07019.x.
Article
PubMed
CAS
Google Scholar
Lee BL, Ong HY, Ong CN: Determination of thiamine and its phosphate esters by gradient-elution high-performance liquid chromatography. J Chrom. 1991, 567: 71-80. 10.1016/0378-4347(91)80311-Y.
Article
CAS
Google Scholar