Vickery JR: Fatty-Acid Composition of Seed Oils from 10 Plant Families with Particular Reference to Cyclopropene and Dihydrosterculic Acids. J Am Oil Chem Soc. 1980, 57: 87-91. 10.1007/BF02674370.
Article
CAS
Google Scholar
Badami RC, Patil KB: Structure and occurrence of unusual fatty acids in minor seed oils. Prog Lipid Res. 1980, 19: 119-153. 10.1016/0163-7827(80)90002-8.
Article
PubMed
CAS
Google Scholar
Ralaimanarivo A, Gaydou EM, Bianchini JP: Fatty-Acid Composition of Seed Oils from 6 Adansonia Species with Particular Reference to Cyclopropane and Cyclopropene Acids. Lipids. 1982, 17: 1-10. 10.1007/BF02535115.
Article
CAS
Google Scholar
Vickery JR, Whitfield FB, Ford GL, Kennett BH: The Fatty-Acid Composition of Gymnospermae Seed and Leaf Oils. J Am Oil Chem Soc. 1984, 61: 573-575. 10.1007/BF02677035.
Article
CAS
Google Scholar
Gaydou EM, Ralaimanarivo A, Bianchini JP: Cyclopropanoic Fatty-Acids of Litchi (Litchi-Chinensis) Seed Oil - a Reinvestigation. J Agr Food Chem. 1993, 41: 886-890. 10.1021/jf00030a009.
Article
CAS
Google Scholar
Grogan DW, Cronan JE: Cyclopropane ring formation in membrane lipids of bacteria. Microbiol Mol Biol Rev. 1997, 61: 429-441.
PubMed
CAS
PubMed Central
Google Scholar
Barry CE, Lee RE, Mdluli K, Sampson AE, Schroeder BG, Slayden RA, Yuan Y: Mycolic acids: structure, biosynthesis and physiological functions. Prog Lipid Res. 1998, 37: 143-179. 10.1016/S0163-7827(98)00008-3.
Article
PubMed
CAS
Google Scholar
Bao X, Katz S, Pollard M, Ohlrogge J: Carbocyclic fatty acids in plants: biochemical and molecular genetic characterization of cyclopropane fatty acid synthesis of Sterculia foetida. Proc Natl Acad Sci USA. 2002, 99: 7172-7177. 10.1073/pnas.092152999.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bao X, Thelen JJ, Bonaventure G, Ohlrogge JB: Characterization of cyclopropane fatty-acid synthase from Sterculia foetida. J Biol Chem. 2003, 278: 12846-12853. 10.1074/jbc.M212464200.
Article
PubMed
CAS
Google Scholar
Rahman MD, Ziering DL, Mannarelli SJ, Swartz KL, Huang DS, Pascal RA: Effects of sulfur-containing analogues of stearic acid on growth and fatty acid biosynthesis in the protozoan Crithidia fasciculata. J Med Chem. 1988, 31: 1656-1659. 10.1021/jm00403a029.
Article
PubMed
CAS
Google Scholar
George KM, Yuan Y, Sherman DR, Barry CE: The biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis. Identification and functional analysis of CMAS-2. J Biol Chem. 1995, 270: 27292-27298. 10.1074/jbc.270.45.27292.
Article
PubMed
CAS
Google Scholar
Yuan Y, Barry CE: A common mechanism for the biosynthesis of methoxy and cyclopropyl mycolic acids in Mycobacterium tuberculosis. Proc Natl Acad Sci USA. 1996, 93: 12828-12833. 10.1073/pnas.93.23.12828.
Article
PubMed
CAS
PubMed Central
Google Scholar
Glickman MS, Cox JS, Jacobs WR: A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol Cell. 2000, 5: 717-727. 10.1016/S1097-2765(00)80250-6.
Article
PubMed
CAS
Google Scholar
Glickman MS: The mmaA2 gene of Mycobacterium tuberculosis encodes the distal cyclopropane synthase of the alpha-mycolic acid. J Biol Chem. 2003, 278: 7844-7849. 10.1074/jbc.M212458200.
Article
PubMed
CAS
Google Scholar
Huang CC, Smith CV, Glickman MS, Jacobs WR, Sacchettini JC: Crystal structures of mycolic acid cyclopropane synthases from Mycobacterium tuberculosis. J Biol Chem. 2002, 277: 11559-11569. 10.1074/jbc.M111698200.
Article
PubMed
CAS
Google Scholar
Courtois F, Ploux O: Escherichia coli cyclopropane fatty acid synthase: is a bound bicarbonate ion the active-site base?. Biochemistry. 2005, 44: 13583-13590. 10.1021/bi051159x.
Article
PubMed
CAS
Google Scholar
Kleiman R, Earle FR, Wolff IA: Dihydrosterculic Acid, a Major Fatty Acid Component of Euphoria Longana Seed Oil. Lipids. 1969, 4: 317-10.1007/BF02530999.
Article
PubMed
CAS
Google Scholar
Fogerty AC, Johnson AR, Pearson JA: Ring position in cyclopropene fatty acids and stearic acid desaturation in hen liver. Lipids. 1972, 7: 335-338. 10.1007/BF02532651.
Article
PubMed
CAS
Google Scholar
Fabrias G, Gosalbo L, Quintana J, Camps F: Direct inhibition of (Z)-9 desaturation of (E)-11-tetradecenoic acid by methylenehexadecenoic acids in the biosynthesis of Spodoptera littoralis sex pheromone. J Lipid Res. 1996, 37: 1503-1509.
PubMed
CAS
Google Scholar
Allen E, Johnson AR, Fogerty AC, Pearson JA, Shenstone FS: Inhibition by cyclopropene fatty acids of the desaturation of stearic acid in hen liver. Lipids. 1967, 2: 419-423. 10.1007/BF02531857.
Article
PubMed
CAS
Google Scholar
Waltermann M, Steinbuchel A: In vitro effects of sterculic acid on lipid biosynthesis in Rhodococcus opacus strain PD630 and isolation of mutants defective in fatty acid desaturation. FEMS Microbiol Lett. 2000, 190: 45-50.
Article
PubMed
CAS
Google Scholar
Phelps RA, Shenstone FS, Kemmerer AR, Evans RJ: A Review of Cyclopropenoid Compounds: Biological Effects of Some Derivatives. Poult Sci. 1965, 44: 358-394.
Article
PubMed
CAS
Google Scholar
Page AM, Sturdivant CA, Lunt DK, Smith SB: Dietary whole cottonseed depresses lipogenesis but has no effect on stearoyl coenzyme desaturase activity in bovine subcutaneous adipose tissue. Comp Biochem Physiol B Biochem Mol Biol. 1997, 118: 79-84. 10.1016/S0305-0491(97)00027-8.
Article
PubMed
CAS
Google Scholar
Kai Y, Pryde EH: Production of Branched-Chain Fatty-Acids from Sterculia Oil. J Am Oil Chem Soc. 1982, 59: 300-305. 10.1007/BF02662231.
Article
CAS
Google Scholar
Pidkowich MS, Nguyen HT, Heilmann I, Ischebeck T, Shanklin J: Modulating seed beta-ketoacyl-acyl carrier protein synthase II level converts the composition of a temperate seed oil to that of a palm-like tropical oil. Proc Natl Acad Sci USA. 2007, 104: 4742-4747. 10.1073/pnas.0611141104.
Article
PubMed
CAS
PubMed Central
Google Scholar
Clough SJ, Bent AF: Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998, 16: 735-743. 10.1046/j.1365-313x.1998.00343.x.
Article
PubMed
CAS
Google Scholar
Lu C, Kang J: Generation of transgenic plants of a potential oilseed crop Camelina sativa by Agrobacterium-mediated transformation. Plant Cell Rep. 2008, 27: 273-278. 10.1007/s00299-007-0454-0.
Article
PubMed
CAS
Google Scholar
Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22: 4673-4680. 10.1093/nar/22.22.4673.
Article
PubMed
CAS
PubMed Central
Google Scholar
Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol. 2007, 24: 1596-1599. 10.1093/molbev/msm092.
Article
PubMed
CAS
Google Scholar
Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987, 4: 406-425.
PubMed
CAS
Google Scholar
Page RD: TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci. 1996, 12: 357-358.
PubMed
CAS
Google Scholar
Wu YR, Llewellyn DJ, Dennis ES: A quick and easy method for isolating good-quality RNA from cotton (Gossypium hirsutum L.) tissues. Plant Mol Biol Rep. 2002, 20: 213-218. 10.1007/BF02782456.
Article
CAS
Google Scholar
Broadwater JA, Whittle E, Shanklin J: Desaturation and hydroxylation. Residues 148 and 324 of Arabidopsis FAD2, in addition to substrate chain length, exert a major influence in partitioning of catalytic specificity. J Biol Chem. 2002, 277: 15613-15620. 10.1074/jbc.M200231200.
Article
PubMed
CAS
Google Scholar
Butte W, Eilers J, Kirsch M: Trialkysulfonium-hydroxides and trialkylselonium-hydroxides for the pyrolytic alkylation of acidic compounds. Anal Lett. 1982, 15: 841-850.
Article
CAS
Google Scholar
Christie WW, (Ed.): Lipid Analyalysis: Isolation, Separation, Identification and Structural Analysis of Lipids. 3rd edition. Bridgwater, England: The Oily Press, 2003.
Google Scholar
Ingrosso D, Fowler AV, Bleibaum J, Clarke S: Sequence of the D-aspartyl/L-isoaspartyl protein methyltransferase from human erythrocytes. Common sequence motifs for protein, DNA, RNA, and small molecule S-adenosylmethionine-dependent methyltransferases. J Biol Chem. 1989, 264: 20131-20139.
PubMed
CAS
Google Scholar
Haydock SF, Dowson JA, Dhillon N, Roberts GA, Cortes J, Leadlay PF: Cloning and sequence analysis of genes involved in erythromycin biosynthesis in Saccharopolyspora erythraea: sequence similarities between EryG and a family of S-adenosylmethionine-dependent methyltransferases. Mol Gen Genet. 1991, 230: 120-128. 10.1007/BF00290659.
Article
PubMed
CAS
Google Scholar
Lauster R, Trautner TA, Noyer-Weidner M: Cytosine-specific type II DNA methyltransferases. A conserved enzyme core with variable target-recognizing domains. J Mol Biol. 1989, 206: 305-312. 10.1016/0022-2836(89)90480-4.
Article
PubMed
CAS
Google Scholar
Smith HO, Annau TM, Chandrasegaran S: Finding sequence motifs in groups of functionally related proteins. Proc Natl Acad Sci USA. 1990, 87: 826-830. 10.1073/pnas.87.2.826.
Article
PubMed
CAS
PubMed Central
Google Scholar
Budin-Verneuil A, Maguin E, Auffray Y, Ehrlich SD, Pichereau V: Transcriptional analysis of the cyclopropane fatty acid synthase gene of Lactococcus lactis MG1363 at low pH. FEMS Microbiol Lett. 2005, 250: 189-194. 10.1016/j.femsle.2005.07.007.
Article
PubMed
CAS
Google Scholar
Grandvalet C, Assad-Garcia JS, Chu-Ky S, Tollot M, Guzzo J, Gresti J, Tourdot-Marechal R: Changes in membrane lipid composition in ethanol- and acid-adapted Oenococcus oeni cells: characterization of the cfa gene by heterologous complementation. Microbiology. 2008, 154: 2611-2619. 10.1099/mic.0.2007/016238-0.
Article
PubMed
CAS
Google Scholar
Guillot A, Obis D, Mistou MY: Fatty acid membrane composition and activation of glycine-betaine transport in Lactococcus lactis subjected to osmotic stress. Int J Food Microbiol. 2000, 55: 47-51. 10.1016/S0168-1605(00)00193-8.
Article
PubMed
CAS
Google Scholar
Monteoli-Vasanchez M, Ramos-Cormenzana A, Russell NJ: The Effect of Salinity and Compatible Solutes on the Biosynthesis of Cyclopropane Fatty-Acids in Pseudomonas halosaccharolytica. J Gen Microbiol. 1993, 139: 1877-1884.
Article
CAS
Google Scholar
Dubois-Brissonnet F, Malgrange C, Guerin-Mechin L, Heyd B, Leveau JY: Changes in fatty acid composition of Pseudomonas aeruginosa ATCC 15442 induced by growth conditions: consequences of resistance to quaternary ammonium compounds. Microbios. 2001, 106: 97-110.
PubMed
CAS
Google Scholar
Loffhagen N, Hartig C, Geyer W, Voyevoda M, Harms H: Competition between cis, trans and cyclopropane fatty acid formation and its impact on membrane fluidity. Eng Life Sci. 2007, 7: 67-74. 10.1002/elsc.200620168.
Article
CAS
Google Scholar
Kuiper PJC, Stuiver B: Cyclopropane fatty acids in relation to earliness in spring and drought tolerance in plants. Plant Physiol. 1972, 49: 307-309. 10.1104/pp.49.3.307.
Article
PubMed
CAS
PubMed Central
Google Scholar
Schmid KM, Patterson GW: Effects of cyclopropenoid fatty acids on fungal growth and lipid composition. Lipids. 1988, 23: 248-252. 10.1007/BF02535466.
Article
PubMed
CAS
Google Scholar
Dowd C, Wilson IW, McFadden H: Gene expression profile changes in cotton root and hypocotyl tissues in response to infection with Fusarium oxysporum f. sp. vasinfectum. Mol Plant Microbe Interact. 2004, 17: 654-667. 10.1094/MPMI.2004.17.6.654.
Article
PubMed
CAS
Google Scholar