Fowler DB, Limin AE: Exploitable genetic variability for cold tolerance in commercially grown cereals. Can J Plant Sci. 1987, 67 (1): 278-278.
Google Scholar
Thomashow MF: Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol. 1999, 50: 571-599. 10.1146/annurev.arplant.50.1.571.
Article
PubMed
Google Scholar
Yamaguchi-Shinozaki K, Shinozaki K: Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol. 2006, 57: 781-803. 10.1146/annurev.arplant.57.032905.105444.
Article
PubMed
Google Scholar
Badawi M, Reddy YV, Agharbaoui Z, Tominaga Y, Danyluk J, Sarhan F, Houde M: Structure and functional analysis of wheat ICE (inducer of CBF expression) genes. Plant Cell Physiol. 2008, 49 (8): 1237-1249. 10.1093/pcp/pcn100.
Article
PubMed
Google Scholar
Fursova OV, Pogorelko GV, Tarasov VA: Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana. Gene. 2009, 429 (1-2): 98-103.
Article
PubMed
Google Scholar
Francia E, Barabaschi D, Tondelli A, Laido G, Rizza F, Stanca AM, Busconi M, Fogher C, Stockinger EJ, Pecchioni N: Fine mapping of a HvCBF gene cluster at the frost resistance locus Fr-H2 in barley. Theor Appl Genet. 2007, 115 (8): 1083-1091. 10.1007/s00122-007-0634-x.
Article
PubMed
Google Scholar
Baga M, Chodaparambil SV, Limin AE, Pecar M, Fowler DB, Chibbar RN: Identification of quantitative trait loci and associated candidate genes for low-temperature tolerance in cold-hardy winter wheat. Funct Integr Genomics. 2007, 7 (1): 53-68. 10.1007/s10142-006-0030-7.
Article
PubMed
Google Scholar
Knox AK, Li CX, Vagujfalvi A, Galilba G, Stockinger EJ, Dubcovsky J: Identification of candidate CBF genes for the frost tolerance locus Fr-A(m)2 in Triticum monococcum. Plant Mol Biol. 2008, 67 (3): 257-270. 10.1007/s11103-008-9316-6.
Article
PubMed
Google Scholar
Campoli C, Matus-Cadiz MA, Pozniak CJ, Cattivelli L, Fowler DB: Comparative expression of Cbf genes in the Triticeae under different acclimation induction temperatures. Mol Genet Genomics. 2009, 282 (2): 141-152. 10.1007/s00438-009-0451-9.
Article
PubMed
PubMed Central
Google Scholar
Alonso-Blanco C, Gomez-Mena C, Llorente F, Koornneef M, Salinas J, Martinez-Zapater JM: Genetic and molecular analyses of natural variation indicate CBF2 as a candidate gene for underlying a freezing tolerance quantitative trait locus in Arabidopsis. Plant Physiol. 2005, 139 (3): 1304-1312. 10.1104/pp.105.068510.
Article
PubMed
PubMed Central
Google Scholar
McKhann HI, Gery C, Berard A, Leveque S, Zuther E, Hincha DK, De Mita S, Brunel D, Teoule E: Natural variation in CBF gene sequence, gene expression and freezing tolerance in the Versailles core collection of Arabidopsis thaliana. BMC Plant Biol. 2008, 8: 105-10.1186/1471-2229-8-105.
Article
PubMed
PubMed Central
Google Scholar
Chinnusamy V, Zhu J, Zhu JK: Cold stress regulation of gene expression in plants. Trends Plant Sci. 2007, 12 (10): 444-451. 10.1016/j.tplants.2007.07.002.
Article
PubMed
Google Scholar
Kosova K, Vitamvas P, Prasil IT: The role of dehydrins in plant response to cold. Biol Plant. 2007, 51 (4): 601-617. 10.1007/s10535-007-0133-6.
Article
Google Scholar
Choi DW, Zhu B, Close TJ: The barley (Hordeum vulgare L.) dehydrin multigene family: sequences, allele types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv Dicktoo. Theor Appl Genet. 1999, 98 (8): 1234-1247. 10.1007/s001220051189.
Article
Google Scholar
Zhu B, Choi DW, Fenton R, Close TJ: Expression of the barley dehydrin multigene family and the development of freezing tolerance. Mol Gen Genet. 2000, 264 (1-2): 145-153. 10.1007/s004380000299.
Article
PubMed
Google Scholar
Kosova K, Prasil IT, Vitamvas P: The relationship between vernalization-and photoperiodically-regulated genes and the development of frost tolerance in wheat and barley. Biol Plant. 2008, 52 (4): 601-615. 10.1007/s10535-008-0120-6.
Article
Google Scholar
Galiba G, Vagujfalvi A, Li CX, Soltesz A, Dubcovsky J: Regulatory genes involved in the determination of frost tolerance in temperate cereals. Plant Sci. 2009, 176 (1): 12-19. 10.1016/j.plantsci.2008.09.016.
Article
Google Scholar
Galiba G, Quarrie SA, Sutka J, Morgounov A, Snape JW: RFLP mapping of the vernalization (Vrn1) and frost resistance (Fr1) genes on chromosome 5A of wheat. Theor Appl Genet. 1995, 90 (7-8): 1174-1179. 10.1007/BF00222940.
Article
PubMed
Google Scholar
Stockinger EJ, Skinner JS, Gardner KG, Francia E, Pecchioni N: Expression levels of barley Cbf genes at the Frost resistance-H2 locus are dependent upon alleles at Fr-H1 and Fr-H2. Plant J. 2007, 51 (2): 308-321. 10.1111/j.1365-313X.2007.0141.x.
Article
PubMed
Google Scholar
Persson K, von Bothmer R, Gullord M, Gunnarsson E: Phenotypic variation and relationships in landraces and improved varieties of rye (Secale cereale L.) from northern Europe. Genet Resour Crop Evol. 2006, 53 (4): 857-866. 10.1007/s10722-004-6694-8.
Article
Google Scholar
Persson K, Von Bothmer R: Genetic diversity amongst landraces of rye (Secale cereale L.) from northern Europe. Hereditas. 2002, 136 (1): 29-38. 10.1034/j.1601-5223.2002.1360105.x.
Article
PubMed
Google Scholar
Shang HY, Wei YM, Wang XR, Zheng YL: Genetic diversity and phylogenetic relationships in the rye genus Secale L. (rye) based on Secale cereale microsatellite markers. Genet Mol Biol. 2006, 29 (4): 685-691. 10.1590/S1415-47572006000400018.
Article
Google Scholar
Flint-Garcia SA, Thornsberry JM, Buckler ES: Structure of linkage disequilibrium in plants. Annu Rev Plant Biol. 2003, 54: 357-374. 10.1146/annurev.arplant.54.031902.134907.
Article
PubMed
Google Scholar
Maccaferri M, Sanguineti MC, Noli E, Tuberosa R: Population structure and long-range linkage disequilibrium in a durum wheat elite collection. Mol Breed. 2005, 15 (3): 271-289. 10.1007/s11032-004-7012-z.
Article
Google Scholar
Tenaillon MI, Sawkins MC, Long AD, Gaut RL, Doebley JF, Gaut BS: Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp mays L.). Proc Natl Acad Sci USA. 2001, 98 (16): 9161-9166. 10.1073/pnas.151244298.
Article
PubMed
PubMed Central
Google Scholar
Ching A, Caldwell KS, Jung M, Dolan M, Smith OS, Tingey S, Morgante M, Rafalski AJ: SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet. 2002, 3: 19-10.1186/1471-2156-3-19.
Article
PubMed
PubMed Central
Google Scholar
Hamblin MT, Fernandez MGS, Casa AM, Mitchell SE, Paterson AH, Kresovich S: Equilibrium processes cannot explain high levels of short- and medium-range linkage disequilibrium in the domesticated grass Sorghum bicolor. Genetics. 2005, 171 (3): 1247-1256. 10.1534/genetics.105.041566.
Article
PubMed
PubMed Central
Google Scholar
Caldwell KS, Russell J, Langridge P, Powell W: Extreme population-dependent linkage disequilibrium detected in an inbreeding plant species, Hordeum vulgare. Genetics. 2006, 172 (1): 557-567. 10.1534/genetics.104.038489.
Article
PubMed
PubMed Central
Google Scholar
Rogowsky PM, Guidet FLY, Langridge P, Shepherd KW, Koebner RMD: Isolation and characterisation of wheat-rye recombinants involving chromosome arm 1DS of wheat. Theor Appl Genet. 1991, 82 (5): 537-544. 10.1007/BF00226788.
Article
PubMed
Google Scholar
Campoli C, Matus-Cadiz MA, Pozniak CJ, Cattivelli L, Fowler DB: Comparative expression of Cbf genes in the Triticeae under different acclimation induction temperatures. Molecular Genetics and Genomics. 2009, 282 (2): 141-152. 10.1007/s00438-009-0451-9.
Article
PubMed
PubMed Central
Google Scholar
Sutton F, Chen DG, Ge XJ, Kenefick D: Cbf genes of the Fr-A2 allele are differentially regulated between long-term cold acclimated crown tissue of freeze-resistant and - susceptible, winter wheat mutant lines. BMC Plant Biol. 2009, 9: 34-10.1186/1471-2229-9-34.
Article
PubMed
PubMed Central
Google Scholar
Skinner JS, von Zitzewitz J, Szucs P, Marquez-Cedillo L, Filichkin T, Amundsen K, Stockinger EJ, Thomashow MF, Chen THH, Hayes PM: Structural, functional, and phylogenetic characterization of a large CBF gene family in barley. Plant Mol Biol. 2005, 59 (4): 533-551. 10.1007/s11103-005-2498-2.
Article
PubMed
Google Scholar
Jaglo KR, Kleff S, Amundsen KL, Zhang X, Haake V, Zhang JZ, Deits T, Thomashow MF: Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol. 2001, 127 (3): 910-917. 10.1104/pp.010548.
Article
PubMed
PubMed Central
Google Scholar
Beales J, Laurie DA, Devos KM: Allelic variation at the linked AP1 and PhyC loci in hexaploid wheat is associated but not perfectly correlated with vernalization response. Theor Appl Genet. 2005, 110 (6): 1099-1107. 10.1007/s00122-005-1938-3.
Article
PubMed
Google Scholar
Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J: Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA. 2003, 100 (10): 6263-6268. 10.1073/pnas.0937399100.
Article
PubMed
PubMed Central
Google Scholar
Fricano A, Rizza F, Faccioli P, Pagani D, Pavan P, Stella A, Rossini L, Piffanelli P, Cattivelli L: Genetic variants of HvCbf14 are statistically associated with frost tolerance in a European germplasm collection of Hordeum vulgare. Theoretical and Applied Genetics. 2009, 119 (7): 1335-1348. 10.1007/s00122-009-1138-7.
Article
PubMed
PubMed Central
Google Scholar
Knox AK, Dhillon T, Cheng HM, Tondelli A, Pecchioni N, Stockinger EJ: CBF gene copy number variation at Frost Resistance-2 is associated with levels of freezing tolerance in temperate-climate cereals. Theor Appl Genet. 2010, 121 (1): 21-35. 10.1007/s00122-010-1288-7.
Article
PubMed
Google Scholar
Yang ZH: PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007, 24 (8): 1586-1591. 10.1093/molbev/msm088.
Article
PubMed
Google Scholar
Khlestkina EK, Ma HMT, Pestsova EG, Roder MS, Malyshev SV, Korzun V, Borner A: Mapping of 99 new microsatellite-derived loci in rye (Secale cereale L.) including 39 expressed sequence tags. Theor Appl Genet. 2004, 109 (4): 725-732. 10.1007/s00122-004-1659-z.
Article
PubMed
Google Scholar
Hackauf B, Wehling P: Identification of microsatellite polymorphisms in an expressed portion of the rye genome. Plant Breed. 2002, 121 (1): 17-25. 10.1046/j.1439-0523.2002.00649.x.
Article
Google Scholar
Liu KJ, Muse SV: PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics. 2005, 21 (9): 2128-2129. 10.1093/bioinformatics/bti282.
Article
PubMed
Google Scholar
Petit RJ, El Mousadik A, Pons O: Identifying populations for conservation on the basis of genetic markers. Conserv Biol. 1998, 12 (4): 844-855. 10.1046/j.1523-1739.1998.96489.x.
Article
Google Scholar
Goudet J: FSTAT (Version 1.2): A computer program to calculate F-statistics. J Hered. 1995, 86 (6): 485-486.
Google Scholar
Dice LR: Measure of the amount of ecologic association between species. Ecology. 1945, 26 (3): 297-302. 10.2307/1932409.
Article
Google Scholar
Excoffier L, Smouse PE, Quattro JM: Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992, 131 (2): 479-491.
PubMed
PubMed Central
Google Scholar
Excoffier L, Laval G, Schneider S: Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evolutionary Bioinformatics. 2005, 1: 47-50.
Google Scholar
Hill WG, Robertson A: Linkage disequilibrium in finite populations. Theor Appl Genet. 1968, 38: 226-231. 10.1007/BF01245622.
Article
PubMed
Google Scholar
Weir B: Genetic data analysis II. Sunderland, MA: Sinauer Associates; 1996.
Google Scholar
Hill WG, Weir BS: Variances and covariance of squared linkage disequilibrium in finite populations. Theor Popul Biol. 1988, 33 (1): 54-78. 10.1016/0040-5809(88)90004-4.
Article
PubMed
Google Scholar
Breseghello F, Sorrells ME: Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics. 2006, 172 (2): 1165-1177. 10.1534/genetics.105.044586.
Article
PubMed
PubMed Central
Google Scholar
Nei M: Molecular Evolutionary Genetics. NY: Columbia University Press;1987.
Google Scholar
Yamasaki M, Schroeder S, Sanchez-Villeda H, Gaut B, McMullen MD: Empirical analysis of selection screens for domestication and improvement loci in maize by extended DNA sequencing. Plant Genome. 2008, 1 (1): 33-43. 10.3835/plantgenome2007.09.0530.
Article
Google Scholar
Krutovsky KV, Neale DB: Nucleotide diversity and linkage disequilibrium in cold-hardiness- and wood quality-related candidate genes in Douglas fir. Genetics. 2005, 171 (4): 2029-2041. 10.1534/genetics.105.044420.
Article
PubMed
PubMed Central
Google Scholar
Lin YH, Hwang SY, Hsu PY, Chiang YC, Huang CL, Wang CN, Lin TP: Molecular population genetics and gene expression analysis of duplicated CBF genes of Arabidopsis thaliana. BMC Plant Biol. 2008, 8: 16-10.1186/1471-2229-8-16.
Article
Google Scholar
Lawton-Rauh A: Evolutionary dynamics of duplicated genes in plants. Mol Phylogenet Evol. 2003, 29 (3): 396-409. 10.1016/j.ympev.2003.07.004.
Article
PubMed
Google Scholar
Biswas S, Akey JM: Genomic insights into positive selection. Trends Genet. 2006, 22 (8): 437-446. 10.1016/j.tig.2006.06.005.
Article
PubMed
Google Scholar
Wachowiak W, Balk PA, Savolainen O: Search for nucleotide diversity patterns of local adaptation in dehydrins and other cold-related candidate genes in Scots pine (Pinus sylvestris L.). Tree Genet Genomes. 2009, 5 (1): 117-132. 10.1007/s11295-008-0188-3.
Article
Google Scholar
Yang Z: Adaptive molecular evolution. Handbook of Statistical Genetics volume 1. Edited by: Balding DJ, Bishop M, Cannings C. West Sussex: John Wiley & Sons; 2003: 229-250.
Google Scholar
Kryazhimskiy S, Plotkin JB: The Population Genetics of dN/dS. Plos Genet. 2008, 4 (12): e1000304-10.1371/journal.pgen.1000304.
Article
PubMed
PubMed Central
Google Scholar
Kilian B, Ozkan H, Kohl J, von Haeseler A, Barale F, Deusch O, Brandolini A, Yucel C, Martin W, Salamini F: Haplotype structure at seven barley genes: relevance to gene pool bottlenecks, phylogeny of ear type and site of barley domestication. Mol Genet Genomics. 2006, 276 (3): 230-241. 10.1007/s00438-006-0136-6.
Article
PubMed
Google Scholar
Tian F, Stevens NM, Buckler ES: Tracking footprints of maize domestication and evidence for a massive selective sweep on chromosome 10. Proc Natl Acad Sci USA. 2009, 106: 9979-9986. 10.1073/pnas.0901122106.
Article
PubMed
PubMed Central
Google Scholar
George J, Dobrowolski MP, de Jong EV, Cogan NOI, Smith KF, Forster JW: Assessment of genetic diversity in cultivars of white clover (Trifolium repens L.) detected by SSR polymorphisms. Genome. 2006, 49 (8): 919-930. 10.1139/G06-079.
Article
PubMed
Google Scholar
Bolaric S, Barth S, Melchinger AE, Posselt UK: Genetic diversity in European perennial ryegrass cultivars investigated with RAPD markers. Plant Breed. 2005, 124 (2): 161-166. 10.1111/j.1439-0523.2004.01032.x.
Article
Google Scholar
Zhang DL, Zhang HL, Wang MX, Sun JL, Qi YW, Wang FM, Wei XH, Han LZ, Wang XK, Li ZC: Genetic structure and differentiation of Oryza sativa L. in China revealed by microsatellites. Theor Appl Genet. 2009, 119 (6): 1105-1117. 10.1007/s00122-009-1112-4.
Article
PubMed
Google Scholar
Xing Y, Frei U, Schejbel B, Asp T, Lubberstedt T: Nucleotide diversity and linkage disequilibrium in 11 expressed resistance candidate genes in Lolium perenne. BMC Plant Biol. 2007, 7: 43-10.1186/1471-2229-7-43.
Article
PubMed
PubMed Central
Google Scholar
Kim S: Recombination and linkage disequilibrium in Arabidopsis thaliana. Nat Genet. 2007, 39: 1151-1155. 10.1038/ng2115.
Article
PubMed
Google Scholar
Nordborg M, Hu TT, Ishino Y, Jhaveri J, Toomajian C, Zheng HG, Bakker E, Calabrese P, Gladstone J, Goyal R, Jakobsson M, Kim S, Morozov Y, Padhukasahasram B, Plagnol V, Rosenberg NA, Shah C, Wall JD, Wang J, Zhao KY, Kalbfleisch T, Schulz V, Kreitman M, Bergelson J: The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol. 2005, 3 (7): 1289-1299. 10.1371/journal.pbio.0030196.
Article
Google Scholar
Gustafson JP, Ma XF, Korzun V, Snape JW: A consensus map of rye integrating mapping data from five mapping populations. Theor Appl Genet. 2009, 118 (4): 793-800. 10.1007/s00122-008-0939-4.
Article
PubMed
Google Scholar
Badawi M, Danyluk J, Boucho B, Houde M, Sarhan F: The CBF gene family in hexaploid wheat and its relationship to the phylogenetic complexity of cereal CBFs. Mol Genet Genomics. 2007, 277 (5): 533-554. 10.1007/s00438-006-0206-9.
Article
PubMed
PubMed Central
Google Scholar
Kraakman ATW, Niks RE, Van den Berg P, Stam P, Van Eeuwijk FA: Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics. 2004, 168 (1): 435-446. 10.1534/genetics.104.026831.
Article
PubMed
PubMed Central
Google Scholar