Weselake RJ: Storage Product Metabolism in Microspore-Derived Cultures of Brassicaceae. Biotech Agric For. 2005, 56: 97-122.
CAS
Google Scholar
Rawsthorne S: Carbon flux and fatty acid synthesis in plants. Prog Lipid Res. 2002, 41 (2): 182-196. 10.1016/S0163-7827(01)00023-6.
Article
PubMed
CAS
Google Scholar
Hill LM, Morley-Smith ER, Rawsthorne S: Metabolism of sugars in the endosperm of developing seeds of oilseed rape. Plant Physiol. 2003, 131 (1): 228-236. 10.1104/pp.010868.
Article
PubMed
CAS
PubMed Central
Google Scholar
Rae AL, Perroux JM, Grof CP: Sucrose partitioning between vascular bundles and storage parenchyma in the sugarcane stem: a potential role for the ShSUT1 sucrose transporter. Planta. 2005, 220 (6): 817-825. 10.1007/s00425-004-1399-y.
Article
PubMed
CAS
Google Scholar
Riesmeier JW, Willmitzer L, Frommer WB: Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. EMBO J. 1992, 11 (13): 4705-4713.
PubMed
CAS
PubMed Central
Google Scholar
Sauer N, Stolz J: SUC1 and SUC2: two sucrose transporters from Arabidopsis thaliana; expression and characterization in baker's yeast and identification of the histidine-tagged protein. Plant J. 1994, 6 (1): 67-77. 10.1046/j.1365-313X.1994.6010067.x.
Article
PubMed
CAS
Google Scholar
Barker L, Kühn C, Weise A, Schulz A, Gebhardt C, Hirner B, Hellmann H, Schulze W, Ward JM, Frommer WB: SUT2, a putative sucrose sensor in sieve elements. Plant Cell. 2000, 12 (7): 1153-1164.
Article
PubMed
CAS
PubMed Central
Google Scholar
Aoki N, Whitfeld P, Hoeren F, Scofield G, Newell K, Patrick J, Offler CE, Clarke B, Rahman S, Furbank RT: Three sucrose transporter genes are expressed in the developing grain of hexaploid wheat. Plant Mol Biol. 2002, 50: 453-462. 10.1023/A:1019846832163.
Article
PubMed
CAS
Google Scholar
Sauer N, Ludwig A, Knoblauch A, Rothe P, Gahrtz M, Klebl F: AtSUC8 and AtSUC9 encode functional sucrose transporters, but the closely related AtSUC6 and AtSUC7 genes encode aberrant proteins in different Arabidopsis ecotypes. Plant J. 2004, 40 (1): 120-130. 10.1111/j.1365-313X.2004.02196.x.
Article
PubMed
CAS
Google Scholar
Sivitz AB, Reinders A, Ward JM: Analysis of the Transport Activity of Barley Sucrose Transporter HvSUT1. Plant Cell Physiol. 2005, 46: 1666-1673. 10.1093/pcp/pci182.
Article
PubMed
CAS
Google Scholar
Liesche J, Schulz A, Krugel U, Grimm B, Kühn C: Dimerization and endocytosis of the sucrose transporter StSUT1 in mature sieve elements. Plant Signal Behav. 2008, 3 (12): 1136-1137. 10.4161/psb.3.12.7096.
Article
PubMed
PubMed Central
Google Scholar
Tang CR, Huang DB, Yang JH, Liu SJ, Sakr S, Li HP, Zhou YH, Qin YX: The sucrose transporter HbSUT3 plays an active role in sucrose loading to laticifer and rubber productivity in exploited trees of Hevea brasiliensis (para rubber tree). Plant Cell Environ. 2010, 33 (10): 1708-1720. 10.1111/j.1365-3040.2010.02175.x.
Article
PubMed
CAS
Google Scholar
Aoki N, Scofield GN, Wang XD, Patrick JW, Offler CE, Furbank RT: Expression and localisation analysis of the wheat sucrose transporter TaSUT1 in vegetative tissues. Planta. 2004, 219 (1): 176-184. 10.1007/s00425-004-1232-7.
Article
PubMed
CAS
Google Scholar
Gottwald JR, Krysan PJ, Young JC, Evert RF, Sussman MR: Genetic evidence for the in planta role of phloem-specific plasma membrane sucrose transporters. Proc Natl Acad Sci USA. 2000, 97 (25): 13979-13984. 10.1073/pnas.250473797.
Article
PubMed
CAS
PubMed Central
Google Scholar
Srivastava AC, Dasgupta K, Ajieren E, Costilla G, McGarry RC, Ayre BG: Arabidopsis plants harbouring a mutation in AtSUC2, encoding the predominant sucrose/proton symporter necessary for efficient phloem transport, are able to complete their life cycle and produce viable seed. Ann Bot. 2009, 104 (6): 1121-1128. 10.1093/aob/mcp215.
Article
PubMed
CAS
PubMed Central
Google Scholar
Sivitz AB, Reinders A, Ward JM: Arabidopsis sucrose transporter AtSUC1 is important for pollen germination and sucrose-induced anthocyanin accumulation. Plant Physiol. 2008, 147 (1): 92-100. 10.1104/pp.108.118992.
Article
PubMed
CAS
PubMed Central
Google Scholar
Riesmeier JW, Willmitzer L, Frommer WB: Evidence for an essential role of the sucrose transporter in phloem loading and assimilate partitioning. EMBO J. 1994, 13 (1): 1-7.
PubMed
CAS
PubMed Central
Google Scholar
Hackel A, Schauer N, Carrari F, Fernie AR, Grimm B, Kühn C: Sucrose transporter LeSUT1 and LeSUT2 inhibition affects tomato fruit development in different ways. Plant J. 2006, 45 (2): 180-192. 10.1111/j.1365-313X.2005.02572.x.
Article
PubMed
CAS
Google Scholar
Leggewie G, Kolbe A, Lemoine R, Roessner U, Lytovchenko A, Zuther E, Kehr J, Frommer WB, Riesmeier JW, Willmitzer L, et al: Overexpression of the sucrose transporter SoSUT1 in potato results in alterations in leaf carbon partitioning and in tuber metabolism but has little impact on tuber morphology. Planta. 2003, 217 (1): 158-167.
PubMed
CAS
Google Scholar
Rosche E, Blackmore D, Tegeder M, Richardson T, Schroeder H, Higgins TJ, Frommer WB, Offler CE, Patrick JW: Seed-specific overexpression of a potato sucrose transporter increases sucrose uptake and growth rates of developing pea cotyledons. Plant J. 2002, 30 (2): 165-175. 10.1046/j.1365-313X.2002.01282.x.
Article
PubMed
CAS
Google Scholar
Eastmond PJ, Rawsthorne S: Coordinate changes in carbon partitioning and plastidial metabolism during the development of oilseed rape embryos. Plant Physiol. 2000, 122 (3): 767-774. 10.1104/pp.122.3.767.
Article
PubMed
CAS
PubMed Central
Google Scholar
Weber H, Borisjuk L, Wobus U: Molecular physiology of legume seed development. Annu Rev Plant Biol. 2005, 56: 253-279. 10.1146/annurev.arplant.56.032604.144201.
Article
PubMed
CAS
Google Scholar
Yuan WZ, Guan CY: Harvest index in rapeseed affected by a few physiogical factoes. Acta Agronomic Sinica. 1997, 23 (5): 580-586.
Google Scholar
Yuan WZ, Guan CY, Liao AL: Contribution of Harvest Index to Seed Yield of Rapeseed. Journal of Natural of Hunan Normal University. 1999, 22 (1): 65-69.
Google Scholar
Yang JC, Zhang JH: Crop management techniques to enhance harvest index in rice. J Exp Bot. 2010, 61 (12): 3177-3189. 10.1093/jxb/erq112.
Article
PubMed
CAS
Google Scholar
Board JE, Modali H: Dry matter accumulation predictors for optimal yield in soybean. Crop Science. 2005, 45 (5): 1790-1799. 10.2135/cropsci2004.0602.
Article
Google Scholar
Yazdani F, Allahdadi I, Akbari GA: Impact of superabsorbent polymer on yield and growth analysis of soybean (Glycine max L.) under drought stress condition. Pak J Biol Sci. 2007, 10 (23): 4190-4196.
Article
PubMed
Google Scholar
Zhu XG, Long SP, Ort DR: Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol. 2010, 61: 235-261. 10.1146/annurev-arplant-042809-112206.
Article
PubMed
CAS
Google Scholar
Chhabra ML: Translocation pattern of assimilates in India mustard. Proc 7th Int Rapeseed Cong, May 11-14, 1987, Poznan, Poland. 1987, 3: 804-812.
Google Scholar
Shen JX, Fu TD, Yang GS, Ma CZ, Tu JX: Genetic analysis of rapeseed self-incompatibility lines reveals significant heterosis of different patterns for yield and oil content traits. Plant Breed. 2005, 124 (2): 111-116. 10.1111/j.1439-0523.2004.01069.x.
Article
CAS
Google Scholar
Li YY, Shen JX, Wang TH, Chen QF, Zhang XG, Fu TD, Meng JL, Tu JX, Ma CZ: QTL analysis of yield-related traits and their association with functional markers in Brassica napus L. Aust J Agr Res. 2007, 58 (8): 759-766. 10.1071/AR06350.
Article
CAS
Google Scholar
Hasan M, Friedt W, Pons-Kuhnemann J, Freitag NM, Link K, Snowdon RJ: Association of gene-linked SSR markers to seed glucosinolate content in oilseed rape (Brassica napus ssp. napus). Theor Appl Genet. 2008, 116 (8): 1035-1049. 10.1007/s00122-008-0733-3.
Article
PubMed
CAS
Google Scholar
Lu JM, Bush DR: His-65 in the proton-sucrose symporter is an essential amino acid whose modification with site-directed mutagenesis increases transport activity. Proc Natl Acad Sci USA. 1998, 95 (15): 9025-9030. 10.1073/pnas.95.15.9025.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kuang H, Woo SS, Meyers BC, Nevo E, Michelmore RW: Multiple genetic processes result in heterogeneous rates of evolution within the major cluster disease resistance genes in lettuce. Plant Cell. 2004, 16 (11): 2870-2894. 10.1105/tpc.104.025502.
Article
PubMed
CAS
PubMed Central
Google Scholar
Casas AM, Djemel A, Ciudad FJ, Yahiaoui S, Ponce LJ, Contreras-Moreira B, Gracia MP, Lasa JM, Igartua E: HvFT1 (VrnH3) drives latitudinal adaptation in Spanish barleys. Theor Appl Genet. 2011, 122 (7): 1293-12304. 10.1007/s00122-011-1531-x.
Article
PubMed
CAS
Google Scholar
Wolters AM, Uitdewilligen JG, Kloosterman BA, Hutten RC, Visser RG, van Eck HJ: Identification of alleles of carotenoid pathway genes important for zeaxanthin accumulation in potato tubers. Plant Mol Biol. 2010, 73 (6): 659-671. 10.1007/s11103-010-9647-y.
Article
PubMed
CAS
PubMed Central
Google Scholar
Baud S, Wuillème S, Lemoine R, Kronenberger J, Caboche M, Lepiniec L, Rochat C: The AtSUC5 sucrose transporter specifically expressed in the endosperm is involved in early seed development in Arabidopsis. Plant J. 2005, 43 (6): 824-836. 10.1111/j.1365-313X.2005.02496.x.
Article
PubMed
CAS
Google Scholar
Sauer N: Molecular physiology of higher plant sucrose transporters. FEBS Lett. 2007, 581 (12): 2309-2317. 10.1016/j.febslet.2007.03.048.
Article
PubMed
CAS
Google Scholar
Shi JQ, Li RY, Qiu D, Jiang CC, Long Y, Morgan C, Bancroft I, Zhao JY, Meng JL: Unraveling the Complex Trait of Crop Yield With Quantitative Trait Loci Mapping in Brassica napus. Genetics. 2009, 182 (3): 851-861. 10.1534/genetics.109.101642.
Article
PubMed
CAS
PubMed Central
Google Scholar
Takahashi Y, Teshima KM, Yokoi S, Innan H, Shimamoto K: Variations in Hd1 proteins, Hd3a promoters, and Ehd1 expression levels contribute to diversity of flowering time in cultivated rice. Proc Natl Acad Sci USA. 2009, 106 (11): 4555-4560. 10.1073/pnas.0812092106.
Article
PubMed
CAS
PubMed Central
Google Scholar
Rebbeck TR, Spitz M, Wu X: Assessing the function of genetic variants in candidate gene association studies. Nat Rev Genet. 2004, 5 (8): 589-597. 10.1038/nrg1403.
Article
PubMed
CAS
Google Scholar
Scofield GN, Hirose T, Aoki N, Furbank RT: Involvement of the sucrose transporter, OsSUT1, in the long-distance pathway for assimilate transport in rice. J Exp Bot. 2007, 58 (12): 3155-3169. 10.1093/jxb/erm153.
Article
PubMed
CAS
Google Scholar
Srivastava AC, Ganesan S, Ismail IO, Ayre BG: Functional characterization of the Arabidopsis AtSUC2 Sucrose/H+ symporter by tissue-specific complementation reveals an essential role in phloem loading but not in long-distance transport. Plant Physiol. 2008, 148 (1): 200-211. 10.1104/pp.108.124776.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kühn C, Hajirezaei MR, Fernie AR, Roessner-Tunali U, Czechowski T, Hirner B, Frommer WB: The sucrose transporter StSUT1 localizes to sieve elements in potato tuber phloem and influences tuber physiology and development. Plant Physiol. 2003, 131 (1): 102-113. 10.1104/pp.011676.
Article
PubMed
PubMed Central
Google Scholar
Rolland F, Baena-Gonzalez E, Sheen J: Sugar sensing and signaling in plants: Conserved and novel mechanisms. Annual Review of Plant Biology. 2006, 57: 675-709. 10.1146/annurev.arplant.57.032905.105441.
Article
PubMed
CAS
Google Scholar
Wind J, Smeekens S, Hanson J: Sucrose: metabolite and signaling molecule. Phytochemistry. 2010, 71 (14-15): 1610-1614. 10.1016/j.phytochem.2010.07.007.
Article
PubMed
CAS
Google Scholar
Jullien A, Mathieu A, Allirand JM, Pinet A, de Reffye P, Cournède PH, Ney B: Characterization of the interactions between architecture and source-sink relationships in winter oilseed rape (Brassica napus) using the GreenLab model. Ann Bot. 2011, 107 (5): 765-779. 10.1093/aob/mcq205.
Article
PubMed
PubMed Central
Google Scholar
Pu HM, Qi CK, Fu SZ: Growth characteristic of pod and source-sink response in oilseed. Jiangsu Agricultural Sciences. 1993, 3: 22-25.
Google Scholar
Malagoli P, Laine P, Rossato L, Ourry A: Dynamics of nitrogen uptake and mobilization in field-grown winter oilseed rape (Brassica napus) from stem extension to harvest - I. Global N flows between vegetative and reproductive tissues in relation to leaf fall and their residual N. Ann Bot. 2005, 95 (5): 853-861. 10.1093/aob/mci091.
Article
PubMed
CAS
PubMed Central
Google Scholar
Khush GS: Green revolution: the way forward. Nat Rev Genet. 2001, 2 (10): 815-822. 10.1038/35093585.
Article
PubMed
CAS
Google Scholar
Sakamoto T, Matsuoka M: Generating high-yielding varieties by genetic manipulation of plant architecture. Curr Opin Biotechnol. 2004, 15 (2): 144-147. 10.1016/j.copbio.2004.02.003.
Article
PubMed
CAS
Google Scholar
Hedden P: The genes of the Green Revolution. Trends in Genetics. 2003, 19 (1): 5-9. 10.1016/S0168-9525(02)00009-4.
Article
PubMed
CAS
Google Scholar
Frary A, Nesbitt TC, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD: fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science. 2000, 289 (5476): 85-88. 10.1126/science.289.5476.85.
Article
PubMed
CAS
Google Scholar
Doebley J, Stec A, Hubbard L: The evolution of apical dominance in maize. Nature. 1997, 386 (6624): 485-488. 10.1038/386485a0.
Article
PubMed
CAS
Google Scholar
Takeda T, Suwa Y, Suzuki M, Kitano H, Ueguchi-Tanaka M, Ashikari M, Matsuoka M, Ueguchi C: The OsTB1 gene negatively regulates lateral branching in rice. Plant J. 2003, 33 (3): 513-520. 10.1046/j.1365-313X.2003.01648.x.
Article
PubMed
CAS
Google Scholar
Fan CC, Xing YZ, Mao HL, Lu TT, Han B, Xu CG, Li XH, Zhang QF: GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet. 2006, 112 (6): 1164-1171. 10.1007/s00122-006-0218-1.
Article
PubMed
CAS
Google Scholar
Xue WY, Xing YZ, Weng XY, Zhao Y, Tang WJ, Wang L, Zhou HJ, Yu SB, Xu CG, Li XH, et al: Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet. 2008, 40 (6): 761-767. 10.1038/ng.143.
Article
PubMed
CAS
Google Scholar
Qiu D, Morgan C, Shi JQ, Long Y, Liu J, Li RY, Zhuang X, Wang Y, Tan X, Dietrich E, et al: A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet. 2006, 114 (1): 67-80. 10.1007/s00122-006-0411-2.
Article
PubMed
CAS
Google Scholar
Doyle JJ, Doyle JL: Isolation of plant DNA from fresh tissue. Focus. 1990, 12: 13-15.
Google Scholar
Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol. 2007, 24 (8): 1596-1599. 10.1093/molbev/msm092.
Article
PubMed
CAS
Google Scholar
Andersen JR, Schrag T, Melchinger AE, Zein I, Lubberstedt T: Validation of Dwarf8 polymorphisms associated with flowering time in elite European inbred lines of maize (Zea mays L.). Theor Appl Genet. 2005, 111 (2): 206-217. 10.1007/s00122-005-1996-6.
Article
PubMed
CAS
Google Scholar
Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, et al: AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995, 23 (21): 4407-4414. 10.1093/nar/23.21.4407.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lu GY, Yang GS, Fu TD: Linkage map construction and mapping of a dominant genic male sterility gene (Ms) in Brassica napus. J Genet Genomics. 2004, 31 (11): 1309-1315.
CAS
Google Scholar
Evanno G, Regnaut S, Goudet J: Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005, 14 (8): 2611-2620. 10.1111/j.1365-294X.2005.02553.x.
Article
PubMed
CAS
Google Scholar
Gao ZR: Quantitative genetics. Sichang University, Chongqing, China; 1986.
Google Scholar
Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001, 25 (4): 402-408. 10.1006/meth.2001.1262.
Article
PubMed
CAS
Google Scholar