Mani S, Cotte Van De B, Van Montagu M, Verbruggen N: Altered levels of proline dehydrogenase cause hypersensitivity to proline and its analogs in Arabidopsis. Plant Physiol. 2002, 128 (1): 73-83. 10.1104/pp.010572.
Article
PubMed
CAS
PubMed Central
Google Scholar
Nanjo T, Kobayashi M, Yoshiba Y, Sanada Y, Wada K, Tsukaya H, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K: Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana. Plant J. 1999, 18 (2): 185-193. 10.1046/j.1365-313X.1999.00438.x.
Article
PubMed
CAS
Google Scholar
Szekely G, Abraham E, Cseplo A, Rigo G, Zsigmond L, Csiszar J, Ayaydin F, Strizhov N, Jasik J, Schmelzer E, et al: Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant Journal. 2008, 53 (1): 11-28. 10.1111/j.1365-313X.2007.03318.x.
Article
PubMed
CAS
Google Scholar
Verbruggen N, Hermans C: Proline accumulation in plants: a review. Amino Acids. 2008, 35 (4): 753-759. 10.1007/s00726-008-0061-6.
Article
PubMed
CAS
Google Scholar
Szabados L, Savoure A: Proline: a multifunctional amino acid. Trends Plant Sci. 2010, 15 (2): 89-97. 10.1016/j.tplants.2009.11.009.
Article
PubMed
CAS
Google Scholar
Hare PD, Cress WA: Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regulation. 1997, 21 (2): 79-102. 10.1023/A:1005703923347.
Article
CAS
Google Scholar
Phang JM, Donald SP, Pandhare J, Liu Y: The metabolism of proline, a stress substrate, modulates carcinogenic pathways. Amino Acids. 2008, 35 (4): 681-690. 10.1007/s00726-008-0063-4.
Article
PubMed
CAS
Google Scholar
Strizhov N, Abraham E, Okresz L, Blickling S, Zilberstein A, Schell J, Koncz C, Szabados L: Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. Plant J. 1997, 12 (3): 557-569. 10.1046/j.1365-313X.1997.00557.x.
Article
PubMed
CAS
Google Scholar
Mattioli R, Falasca G, Sabatini S, Altamura MM, Costantino P, Trovato M: The proline biosynthetic genes P5CS1 and P5CS2 play overlapping roles in Arabidopsis flower transition but not in embryo development. Physiologia Plantarum. 2009, 137 (1): 72-85. 10.1111/j.1399-3054.2009.01261.x.
Article
PubMed
CAS
Google Scholar
Rayapati PJ, Stewart CR, Hack E: Pyrroline-5-Carboxylate Reductase Is in Pea (Pisum sativum L.) Leaf Chloroplasts. Plant Physiol. 1989, 91 (2): 581-586. 10.1104/pp.91.2.581.
Article
PubMed
CAS
PubMed Central
Google Scholar
Szoke A, Miao GH, Hong Z, Verma DP: Subcellular Location of Delta-Pyrroline-5-Carboxylate Reductase in Root/Nodule and Leaf of Soybean. Plant Physiol. 1992, 99 (4): 1642-1649. 10.1104/pp.99.4.1642.
Article
PubMed
CAS
PubMed Central
Google Scholar
Adams E, Frank L: Metabolism of proline and the hydroxyprolines. Annu Rev Biochem. 1980, 49: 1005-1061. 10.1146/annurev.bi.49.070180.005041.
Article
PubMed
CAS
Google Scholar
Funck D, Stadelhofer B, Koch W: Ornithine-delta-aminotransferase is essential for arginine catabolism but not for proline biosynthesis. BMC Plant Biol. 2008, 8: 40-10.1186/1471-2229-8-40.
Article
PubMed
PubMed Central
Google Scholar
Elthon TE, Stewart CR: Proline Oxidation in Corn Mitochondria: Involvement of NAD, Relationship to Ornithine Metabolism, and Sidedness on the Inner Membrane. Plant Physiol. 1982, 70 (2): 567-572. 10.1104/pp.70.2.567.
Article
PubMed
CAS
PubMed Central
Google Scholar
Elthon TE, Stewart CR: Submitochondrial Location and Electron Transport Characteristics of Enzymes Involved in Proline Oxidation. Plant Physiol. 1981, 67 (4): 780-784. 10.1104/pp.67.4.780.
Article
PubMed
CAS
PubMed Central
Google Scholar
Deuschle K, Funck D, Forlani G, Stransky H, Biehl A, Leister D, Graaff van der E, Kunze R, Frommer WB: The role of [Delta]1-pyrroline-5-carboxylate dehydrogenase in proline degradation. Plant Cell. 2004, 16 (12): 3413-3425. 10.1105/tpc.104.023622.
Article
PubMed
CAS
PubMed Central
Google Scholar
Nakashima K, Satoh R, Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K: A gene encoding proline dehydrogenase is not only induced by proline and hypoosmolarity, but is also developmentally regulated in the reproductive organs of Arabidopsis. Plant Physiol. 1998, 118 (4): 1233-1241. 10.1104/pp.118.4.1233.
Article
PubMed
CAS
PubMed Central
Google Scholar
Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK: Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell. 2005, 123 (7): 1279-1291. 10.1016/j.cell.2005.11.035.
Article
PubMed
CAS
PubMed Central
Google Scholar
Deuschle K, Funck D, Hellmann H, Daschner K, Binder S, Frommer WB: A nuclear gene encoding mitochondrial Delta-pyrroline-5-carboxylate dehydrogenase and its potential role in protection from proline toxicity. Plant J. 2001, 27 (4): 345-356. 10.1046/j.1365-313X.2001.01101.x.
Article
PubMed
CAS
Google Scholar
Nanjo T, Fujita M, Seki M, Kato T, Tabata S, Shinozaki K: Toxicity of free proline revealed in an arabidopsis T-DNA-tagged mutant deficient in proline dehydrogenase. Plant Cell Physiol. 2003, 44 (5): 541-548. 10.1093/pcp/pcg066.
Article
PubMed
CAS
Google Scholar
Hare PD, Cress WA, van Staden J: Disruptive effects of exogenous proline on chloroplast and mitochondrial ultrastructure in Arabidopsis leaves. South African Journal of Botany. 2002, 68 (3): 393-396.
Article
CAS
Google Scholar
Miller G, Honig A, Stein H, Suzuki N, Mittler R, Zilberstein A: Unraveling delta1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes. J Biol Chem. 2009, 284 (39): 26482-26492. 10.1074/jbc.M109.009340.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ribarits A, Abdullaev A, Tashpulatov A, Richter A, Heberle-Bors E, Touraev A: Two tobacco proline dehydrogenases are differentially regulated and play a role in early plant development. Planta. 2007, 225 (5): 1313-1324. 10.1007/s00425-006-0429-3.
Article
PubMed
CAS
Google Scholar
Hanson J, Hanssen M, Wiese A, Hendriks MM, Smeekens S: The sucrose regulated transcription factor bZIP11 affects amino acid metabolism by regulating the expression of ASPARAGINE SYNTHETASE1 and PROLINE DEHYDROGENASE2. Plant J. 2008, 53 (6): 935-949. 10.1111/j.1365-313X.2007.03385.x.
Article
PubMed
CAS
Google Scholar
Kiyosue T, Yoshiba Y, Yamaguchi-Shinozaki K, Shinozaki K: A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis. Plant Cell. 1996, 8 (8): 1323-1335. 10.1105/tpc.8.8.1323.
Article
PubMed
CAS
PubMed Central
Google Scholar
Athena promoter visualization tool. [http://www.bioinformatics2.wsu.edu/Athena]
O'Connor TR, Dyreson C, Wyrick JJ: Athena: a resource for rapid visualization and systematic analysis of Arabidopsis promoter sequences. Bioinformatics. 2005, 21 (24): 4411-4413. 10.1093/bioinformatics/bti714.
Article
PubMed
Google Scholar
BAR The Bio-Array Resource for Arabidopsis Functional Genomics. [http://bbc.botany.utoronto.ca/]
Genevestigator v3. [http://www.genevestigator.com]
Peng Z, Lu Q, Verma DP: Reciprocal regulation of delta 1-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes controls proline levels during and after osmotic stress in plants. Mol Gen Genet. 1996, 253 (3): 334-341.
PubMed
CAS
Google Scholar
Rook F, Gerrits N, Kortstee A, van Kampen M, Borrias M, Weisbeek P, Smeekens S: Sucrose-specific signalling represses translation of the Arabidopsis ATB2 bZIP transcription factor gene. Plant J. 1998, 15 (2): 253-263. 10.1046/j.1365-313X.1998.00205.x.
Article
PubMed
CAS
Google Scholar
Hellmann H, Funck D, Rentsch D, Frommer WB: Hypersensitivity of an Arabidopsis sugar signaling mutant toward exogenous proline application. Plant Physiol. 2000, 123 (2): 779-789. 10.1104/pp.123.2.779.
Article
PubMed
CAS
PubMed Central
Google Scholar
Larkindale J, Vierling E: Core genome responses involved in acclimation to high temperature. Plant Physiol. 2008, 146 (2): 748-761. 10.1104/pp.107.112060.
Article
PubMed
CAS
PubMed Central
Google Scholar
Rosso MG, Li Y, Strizhov N, Reiss B, Dekker K, Weisshaar B: An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Mol Biol. 2003, 53 (1-2): 247-259. 10.1023/B:PLAN.0000009297.37235.4a.
Article
PubMed
CAS
Google Scholar
Murashige T, Skoog F: A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 1962, 15 (15): 473-497. 10.1111/j.1399-3054.1962.tb08052.x.
Article
CAS
Google Scholar
Xiang C, Han P, Lutziger I, Wang K, Oliver DJ: A mini binary vector series for plant transformation. Plant Mol Biol. 1999, 40 (4): 711-717. 10.1023/A:1006201910593.
Article
PubMed
CAS
Google Scholar
Clough SJ, Bent AF: Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998, 16 (6): 735-743. 10.1046/j.1365-313x.1998.00343.x.
Article
PubMed
CAS
Google Scholar
Wydro M, Kozubek E, Lehmann P: Optimization of transient Agrobacterium-mediated gene expression system in leaves of Nicotiana benthamiana. Acta Biochim Pol. 2006, 53 (2): 289-298.
PubMed
CAS
Google Scholar
Martin T, Hellmann H, Schmidt R, Willmitzer L, Frommer WB: Identification of mutants in metabolically regulated gene expression. The Plant Journal. 1997, 11 (1): 53-62. 10.1046/j.1365-313X.1997.11010053.x.
Article
PubMed
CAS
Google Scholar
Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P: Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinformatics. 2008, 2008: 420747-
Article
PubMed
PubMed Central
Google Scholar
Toufighi K, Brady SM, Austin R, Ly E, Provart NJ: The Bio-Array Resource for Plant Functional Genomics. Plant J. 2005, 43 (1): 153-163. 10.1111/j.1365-313X.2005.02437.x.
Article
PubMed
CAS
Google Scholar
Nakagawa T, Kurose T, Hino T, Tanaka K, Kawamukai M, Niwa Y, Toyooka K, Matsuoka K, Jinbo T, Kimura T: Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. Journal of Bioscience and Bioengineering. 2007, 104 (1): 34-10.1263/jbb.104.34.
Article
PubMed
CAS
Google Scholar
Grenson M: The utilization of exogenous pyrimidines and the recycling of uridine-5'-phosphate derivatives in Saccharomyces cerevisiae, as studied by means of mutants affected in pyrimidine uptake and metabolism. Eur J Biochem. 1969, 11 (2): 249-260. 10.1111/j.1432-1033.1969.tb00767.x.
Article
PubMed
CAS
Google Scholar
Achim W, Arndt B, Rainer P, Peter P: New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast. 1994, 10 (13): 1793-1808. 10.1002/yea.320101310.
Article
Google Scholar
Gietz RD, Woods RA: Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. 2002, 350: 87-96. 10.1016/S0076-6879(02)50957-5.
Article
PubMed
CAS
Google Scholar