Lobell DB, Asner GP: Climate and management contributions to recent trends in U.S. agricultural yields. Science. 2003, 299: 1032-10.1126/science.1077838.
Article
PubMed
CAS
Google Scholar
Weis E, Berry JA: Plants and high temperature stress. Symp Soc Exp Biol. 1988, 42: 329-346.
PubMed
CAS
Google Scholar
Wise RR, Olson AJ, Schrader SM, Sharkey TD: Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. Plant Cell Environ. 2004, 25: 717-724. 10.1111/j.1365-3040.2004.01171.x.
Article
Google Scholar
Ronde JADD, Cress WA, Kruger GHJ, Strasser RJ, Staden JV: Photosynthetic response of transgenic soybean plants containing an Arabidopsis P5CR gene, during heat and drought stress. J Plant Physiol. 2004, 61: 1211-1244.
Article
Google Scholar
De las Rivas J, Barber J: Structure and thermal stability of photosystem II reaction centers studied by infrared spectroscopy. Biochem. 1997, 36: 8897-8903. 10.1021/bi970684w.
Article
CAS
Google Scholar
Pospýsil P, Tyystjarvi E: Molecular mechanism of high-temperature induced inhibition of acceptor side of photosystem II. Photosynth Res. 1999, 62: 55-66. 10.1023/A:1006369009170.
Article
Google Scholar
Bukhoc NG, Carpentier R: Heterogeneity of photosystem II reaction centers as influenced by heat treatment of barley leaves. Physiol Plant. 2000, 110: 259-285.
Google Scholar
Wen XG, Gong HM, Lu CM: Heat stress induces a reversible inhibition of electron transport at the acceptor side of photosystem II in a cyanobacterium Spirulina platensis . Plant Sci. 2005, 168: 1471-1476. 10.1016/j.plantsci.2005.01.015.
Article
CAS
Google Scholar
Delfine S, Alvino A, Zacchini M, Loreto F: Consequences of salt stress on CO2 diffusion, Rubisco characteristics and anatomy of spinach leaves. Aust J Plant Physiol. 1998, 25: 395-402. 10.1071/PP97161.
Article
CAS
Google Scholar
Havaux M, Tardy F, Ravenal J, Chanu D, Parot P: Thylakoid membrane stability to heat stress studied by flash spectroscopic measurements of the electrochromic shift in intact potato leaves: influence of the xanthophyll content. Plant Cell Environ. 1996, 9: 1359-1368. 10.1111/j.1365-3040.1996.tb00014.x.
Article
Google Scholar
Tardy F, Havaux M: Thylakoid membrane fluidity and thermostability during the operation of the xanthophyll cycle in higher-plant chloroplasts. Biochem Biophys Acta. 1997, 330: 179-193.
Article
Google Scholar
Heckathorn SACA, Downs TD, Sharkey JS, Coleman G: The small, methionine-rich chloroplast heat-shock protein protects photosystem II electron transport during heat stress. Plant Physiol. 1998, 116: 439-444. 10.1104/pp.116.1.439.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zhang XZ, Ervin EH, Schmidt RE: Plant growth regulators can enhance the recovery of Kentucky bluegrass sod from heat injury. Crop Sci. 2003, 43: 952-956.
Article
CAS
Google Scholar
Horvath E, Szalai G, Janda T: Induction of abiotic stress tolerance by salicyclic acid signaling. J Plant Growth Regul. 2007, 26: 290-300. 10.1007/s00344-007-9017-4.
Article
CAS
Google Scholar
Raskin I: Role of salicylic acid in plants. Annu Rev Plant Physiol Plant Mol Biol. 1992, 43: 439-63. 10.1146/annurev.pp.43.060192.002255.
Article
CAS
Google Scholar
Arfana M, Atharb HR, Ashraf M: Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress?. J Plant Physiol. 2007, 164: 685-694. 10.1016/j.jplph.2006.05.010.
Article
Google Scholar
El-Tayeb MA: Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regul. 2005, 45: 215-24. 10.1007/s10725-005-4928-1.
Article
CAS
Google Scholar
Munne-Bosch S, Penuelas J: Photo- and antioxidantive protection, and a role for salicylic acid during drought and recovery in field-grown Phillyrea angustifolia plants. Planta. 2003, 217: 758-766. 10.1007/s00425-003-1037-0.
Article
PubMed
CAS
Google Scholar
Singh B, Usha K: Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regul. 2003, 39: 137-141. 10.1023/A:1022556103536.
Article
CAS
Google Scholar
Dat JF, Lopez-Delgado H, Foyer CH, Scott IM: Paralell changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard plants. Plant Physiol. 1998, 116: 1351-1357. 10.1104/pp.116.4.1351.
Article
PubMed
CAS
PubMed Central
Google Scholar
Dat JF, Foyer CH, Scott IM: Change in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Plant Physiol. 1998, 118: 1445-1456. 10.1104/pp.118.4.1455.
Article
Google Scholar
Lopez-Delgado H, Dat JF, Foyer CH, Scott IM: Induction of thermotolerance in potato microplants by acetylsalicylic acid and H2O2. J Exp Bot. 1998, 49: 713-720. 10.1093/jexbot/49.321.713.
Article
CAS
Google Scholar
Senaratna T, Touchell D, Bumm E, Dixon K: Acetylsalicylic (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Gowth Regul. 2000, 30: 157-61. 10.1023/A:1006386800974.
Article
CAS
Google Scholar
Clark SM, Mur LAJ, Wood JE, Scott IM: Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana . Plant J. 2004, 38: 432-437. 10.1111/j.1365-313X.2004.02054.x.
Article
Google Scholar
Wang LJ, Li SH: Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants. Plant Sci. 2006, 170: 685-694. 10.1016/j.plantsci.2005.09.005.
Article
CAS
Google Scholar
Wang LJ, Li SH: The effects of salicylic acid on distribution of 14C-assimilation and photosynthesis in young grape plants under heat stress. Acta Horticulture. 2007, 738: 779-7851.
Article
CAS
Google Scholar
Domonkos P: Recent precipitation trends in Hungary in the context of larger scale climatic changes. Natural Hazards. 2003, 29: 255-271. 10.1023/A:1023690014955.
Article
Google Scholar
Van Leeuwen C, Friant P, Chone X, Tregoat O, Koundouras S, Dubourdieu D: The influence of climate, soil and cultivar on terroir. Am J Enol Viticult. 2004, 55: 207-217.
Google Scholar
Zsófi Z, Gál L, Szilágyi Z, Szucs E, Marschall M, Nagy Z, Bálo B: Use of stomatal conductance and pre-dawn water potential to classify terroir for the grape variety Kékfrankos. Aust J Grape Wine R. 2009, 15: 36-47. 10.1111/j.1755-0238.2008.00036.x.
Article
Google Scholar
Schultz HR: Climate change and world viticulture. Cost Action 858 Workshop: Vineyard under environmental constraints: adaptations to climate change. Abiotic stress ecophysiology and grape functional genomics. Poland: University of Lodz 2007.
Google Scholar
Srivastava A, Guisse B, Greppin H, Strasser RJ: Regulation of antenna structure and electron transport in photosystem II of Pisum sativum under elevated temperature probed by the fast t polyphasic chlorophyll a fluorescence transient: OKJIP. Bio-chim Biophys Acta. 1997, 95-106. 10.1016/S0005-2728(97)00017-0.
Google Scholar
Strasser BJ: Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients. Photosynth Res. 1997, 52: 147-155. 10.1023/A:1005896029778.
Article
CAS
Google Scholar
Lu CM, Zhang J: Heat -induced multiple effects on PSII in wheat plants. J Plant Physiol. 2000, 156: 259-265.
Article
CAS
Google Scholar
Berry J, Bjorkman O: Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol. 1980, 31: 491-543. 10.1146/annurev.pp.31.060180.002423.
Article
Google Scholar
Cao J, Govindjee : Chlorophyll a fluorescence transients as an indicator of active and inactive photosystem II in thylakoid membranes. Biochim Biophys Acta. 1990, 1015: 180-188. 10.1016/0005-2728(90)90018-Y.
Article
PubMed
CAS
Google Scholar
Kooten O, Snel JFH: The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosyn Res. 1990, 25: 147-150. 10.1007/BF00033156.
Article
PubMed
Google Scholar
Lu CM, Zhang JH: Photosystem II photochemistry and its sensitivity to heat stress in maize plants as affected by nitrogen deficiency. J Plant Physiol. 2000, 157: 124-130.
Article
CAS
Google Scholar
Salvucci ME, Crafts-Brandner SJ: Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol Plant. 2004, 120: 179-186. 10.1111/j.0031-9317.2004.0173.x.
Article
PubMed
CAS
Google Scholar
Yamori W, Suzuki K, Noguchi K, Nakai M, Terashima I: Effect of Rubisco kinetics and Rubisco activation state on the temperature dependence of the photosynthetic rate in spinach leaves from contrasting growth temperatures. Plant Cell Environ. 2006, 29: 1659-1670. 10.1111/j.1365-3040.2006.01550.x.
Article
PubMed
CAS
Google Scholar
Neta-Sharir I, Isaacson T, Lurie S, Weiss D: Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. Plant Cell. 2005, 17: 1829-1838. 10.1105/tpc.105.031914.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wang WX, Vinocur B, Shoseyov O, Altman A: Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science. 2004, 9: 244-252. 10.1016/j.tplants.2004.03.006.
Article
PubMed
CAS
Google Scholar
Didomenico BJ, Bugaisky G, Lindquist S: Heat shock and recovery are mediated by different translational mechanisms. Proc Natl Acad Sci USA. 1982, 79: 6181-6185. 10.1073/pnas.79.20.6181.
Article
PubMed
CAS
PubMed Central
Google Scholar
Park SY, Chang KC, Shivaji R, Luthe DS: Recovery from heat shock in heat-tolerant and nontolerant variants of creeping bentgrass. Plant Physiol. 1997, 115: 229-240. 10.1104/pp.115.2.763.
Article
PubMed
CAS
PubMed Central
Google Scholar
Demmig-Adams B, Adams WW, Barker DH, Logan BA, Bowling DR, Verhoeven AS: Using chlorophyll fluorescence to assess the fraction of absorbed light allocted to thermal dissipation of excess excitation. Physiol Plant. 1986, 98: 253-264. 10.1034/j.1399-3054.1996.980206.x.
Article
Google Scholar
Strauss AJ, Krüger GHJ, Strasser RJ, Van Heerden PDR: Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient O-J-I-P. Environ Exp Bot. 2006, 56: 147-157. 10.1016/j.envexpbot.2005.01.011.
Article
CAS
Google Scholar
Chen LS, Cheng LL: Carbon assimilation and carbohydrate metabolism of 'Concord' grape (Vitis labrusca L.) leaves in response to nitrogen supply. J Am Soc Hort Sci. 2003, 128: 754-760.
CAS
Google Scholar
Cheng LL, Fuchigami LH: Rubisco activation state decreases with increasing nitrogen content in apple leaves. J Exp Bo. 2000, 51: 1687-1694. 10.1093/jexbot/51.351.1687.
Article
CAS
Google Scholar
Hong SW, Lee U, Vierling E: Arabidopsis hot multiple functions required for acclimation to high temperatures. Plant Physiol. 2003, 132: 757-767. 10.1104/pp.102.017145.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Ana Biochem. 1976, 72: 248-254. 10.1016/0003-2697(76)90527-3.
Article
CAS
Google Scholar