Jones JDG, Dangl JL: The plant immune system. Nature. 2006, 444: 323-329. 10.1038/nature05286.
Article
PubMed
CAS
Google Scholar
Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM: Networking by small-molecule hormones in plant immunity. Nat Chem Biol. 2009, 5: 308-316. 10.1038/nchembio.164.
Article
PubMed
CAS
Google Scholar
Greenberg JT: Programmed cell death in plant-pathogen interactions. Ann Rev Plant Physiol Plant Mol Biol. 1997, 48: 525-545. 10.1146/annurev.arplant.48.1.525.
Article
CAS
Google Scholar
Greenberg JT, Yao N: The role and regulation of programmed cell death in plant-pathogen interactions. Cell Microbiol. 2004, 6: 201-211. 10.1111/j.1462-5822.2004.00361.x.
Article
PubMed
CAS
Google Scholar
van Doorn WG, Woltering EJ: Many ways to exit? Cell death categories in plants. Trends Plant Sci. 2005, 10: 117-122. 10.1016/j.tplants.2005.08.003.
Article
PubMed
CAS
Google Scholar
Giuliani C, Consonni G, Gavazzi G, Colombo M, Dolfini S: Programmed cell death during embryogenesis in maize. Ann Bot. 2002, 90: 287-292. 10.1093/aob/mcf173.
Article
PubMed
PubMed Central
Google Scholar
Gunawardena AH, Greenwood JS, Dengler NG: Programmed cell death remodels lace plant leaf shape during development. Plant Cell. 2004, 16: 60-73. 10.1105/tpc.016188.
Article
PubMed
CAS
PubMed Central
Google Scholar
Xu Y, Hanson MR: Programmed cell death during pollination-induced petal senescence in petunia. Plant Physiol. 2000, 122: 1323-1334. 10.1104/pp.122.4.1323.
Article
PubMed
CAS
PubMed Central
Google Scholar
Cacas JL: Devil inside: does plant programmed cell death involve the endomembrane system?. Plant Cell Environ. 2010, 33: 1453-1473.
PubMed
CAS
Google Scholar
Jwa NS, Park SG, Park CH, Kim SO, Ahn IP, Park SY, Yoon CH, Lee YH: Cloning and expression of a rice cDNA encoding a Lls1 homologue of maize. Plant Pathol J. 2000, 16: 151-155.
Google Scholar
Chung E, Oh SK, Park JM, Choi D: Expression and promoter analyses of pepper CaCDPK4 (Capsicum annuum calcium dependent protein kinase 4) during plant defense response to incompatible pathogen. Plant Pathol J. 2007, 23: 76-89. 10.5423/PPJ.2007.23.2.076.
Article
Google Scholar
Zhou J, Loh Y, Bressan R, Martin G: The tomato gene Pti1 encodes a serine/threonine kinase that is phosphorylated by Pto and is involved in the hypersensitive response. Cell. 1995, 83: 925-935. 10.1016/0092-8674(95)90208-2.
Article
PubMed
CAS
Google Scholar
Mittler R, Rizhsky L: Transgene-induced lesion mimic. Plant Mol Biol. 2000, 44: 335-344. 10.1023/A:1026544625898.
Article
PubMed
CAS
Google Scholar
Vailleau F, Daniel X, Tronchet M, Montillet JL, Triantaphylidès C, Roby D: A R2R3-MYB gene, AtMYB30, acts as a positive regulator of the hypersensitive cell death program in plants in response to pathogen attack. Proc Natl Acad Sci USA. 2002, 99: 10179-10184. 10.1073/pnas.152047199.
Article
PubMed
CAS
PubMed Central
Google Scholar
Nadimpalli R, Yalpani N, Johal GS, Simmons CR: Prohibitins, stomatins, and plant disease response genes compose a protein superfamily that controls cell proliferation, ion channel regulation, and death. J Biol Chem. 2000, 275: 29579-29586. 10.1074/jbc.M002339200.
Article
PubMed
CAS
Google Scholar
Rostoks N, Schmierer D, Kudrna D, Kleinhofs A: Barley putative hypersensitive induced reaction genes: genetic mapping, sequence analyses and differential expression in disease lesion mimic mutants. Theor Appl Genet. 2003, 107: 1094-1101. 10.1007/s00122-003-1351-8.
Article
PubMed
CAS
Google Scholar
Xiao F, Tang X, Zhou JM: Expression of 35S:: Pto globally activates defense-related genes in tomato plants. Plant Physiol. 2001, 126: 1637-1645. 10.1104/pp.126.4.1637.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zhou L, Cheung MY, Zhang Q, Lei CL, Zhang SH, Sun SSM, Lam HM: A novel simple extracellular leucine-rich repeat (eLRR) domain protein from rice (OsLRR1) enters the endosomal pathway and interacts with the hypersensitive-induced reaction protein 1 (OsHIR1). Plant Cell Environ. 2009, 32: 1804-1820. 10.1111/j.1365-3040.2009.02039.x.
Article
PubMed
CAS
Google Scholar
Yu XM, Yu XD, Qu ZP, Huang XJ, Guo J, Han QM, Zhao J, Huang LL, Kang ZS: Cloning of a putative hypersensitive induced reaction gene from wheat infected by stripe rust fungus. Gene. 2008, 407: 193-198. 10.1016/j.gene.2007.10.010.
Article
PubMed
CAS
Google Scholar
Jung HW, Hwang BK: The leucine-rich repeat (LRR) protein, CaLRR1, interacts with the hypersensitive induced reaction (HIR) protein, CaHIR1, and suppresses cell death induced by the CaHIR1 protein. Mol Plant Pathol. 2007, 8: 503-514. 10.1111/j.1364-3703.2007.00410.x.
Article
PubMed
CAS
Google Scholar
Jaquinod M, Villiers F, Kieffer-Jaquinod S, Hugouvieux V, Bruley C, Garin J, Bourguignon J: A proteomics dissection of Arabidopsis thaliana vacuoles isolated from cell culture. Mol Cell Proteomics. 2007, 6: 394-412.
Article
PubMed
CAS
PubMed Central
Google Scholar
Carter C, Pan S, Zouhar J, Avila EL, Girke T, Raikhel NV: The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Cell. 2004, 16: 3285-3303. 10.1105/tpc.104.027078.
Article
PubMed
CAS
PubMed Central
Google Scholar
De Castro E, Sigrist CJA, Gattiker A, Bulliard V, Langendijk-Genevaux PS, Gasteiger E, Bairoch A, Hulo N: ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucl Acids Res. 2006, 34: W362-W365. 10.1093/nar/gkl124.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ren J, Wen L, Gao X, Jin C, Xue Y, Yao X: CSS-Palm 2.0: an updated software for palmitoylation sites prediction. Protein Eng Des Sel. 2008, 21: 639-644. 10.1093/protein/gzn039.
Article
PubMed
CAS
PubMed Central
Google Scholar
Thomma BPHJ, Eggermont K, Penninckx IAMA, Mauch-Mani B, Vogelsang R, Cammue B, Broekaert WF: Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci USA. 1998, 95: 15107-15111. 10.1073/pnas.95.25.15107.
Article
PubMed
CAS
PubMed Central
Google Scholar
Browman DT, Hoegg MB, Robbins SM: The SPFH domain-containing proteins: more than lipid raft markers. Trends Cell Biol. 2007, 17: 394-402. 10.1016/j.tcb.2007.06.005.
Article
PubMed
CAS
Google Scholar
Lin SS, Martin R, Mongrand S, Vandenabeele S, Chen KC, Jang IC, Chua NH: RING1 E3 ligase localizes to plasma membrane lipid rafts to trigger FB1-induced programmed cell death in Arabidopsis. Plant J. 2008, 56: 550-561. 10.1111/j.1365-313X.2008.03625.x.
Article
PubMed
CAS
Google Scholar
Chen F, Yuan Y, Li Q, He Z: Proteomic analysis of rice plasma membrane reveals proteins involved in early defense response to bacterial blight. Proteomics. 2007, 7: 1529-1539. 10.1002/pmic.200500765.
Article
PubMed
CAS
Google Scholar
Nohzadeh Malakshah S, Habibi Rezaei M, Heidari M, Hosseini Salekdeh G: Proteomics reveals new salt responsive proteins associated with rice plasma membrane. Biosci Biotechnol Biochem. 2007, 71: 2144-2154. 10.1271/bbb.70027.
Article
PubMed
Google Scholar
Natera SHA, Ford KL, Cassin AM, Patterson JH, Newbigin EJ, Bacic A: Analysis of the Oryza sativa plasma membrane proteome using combined protein and peptide fractionation approaches in conjunction with mass spectrometry. J Proteome Res. 2008, 7: 1159-1187. 10.1021/pr070255c.
Article
PubMed
CAS
Google Scholar
Marmagne A, Ferro M, Meinnel T, Bruley C, Kuhn L, Garin J, Barbier-Brygoo H, Ephritikhine G: A high content in lipid-modified peripheral proteins and integral receptor kinases features in the Arabidopsis plasma membrane proteome. Mol Cell Proteomics. 2007, 6: 1980-10.1074/mcp.M700099-MCP200.
Article
PubMed
CAS
Google Scholar
Hatsugai N, Iwasaki S, Tamura K, Kondo M, Fuji K, Ogasawara K, Nishimura M, Hara-Nishimura I: A novel membrane fusion-mediated plant immunity against bacterial pathogens. Genes Dev. 2009, 23: 2496-2506. 10.1101/gad.1825209.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K: Phenol/SDS method for plant RNA preparation. John Wiley & Sons Inc 1995.
Google Scholar
Cheung MY, Zeng NY, Tong SW, Li FWY, Zhao KJ, Zhang Q, Sun SSM, Lam HM: Expression of a RING-HC protein from rice improves resistance to Pseudomonas syringae pv. tomato DC3000 in transgenic Arabidopsis thaliana. J Exp Bot. 2007, 58: 4147-4159. 10.1093/jxb/erm272.
Article
PubMed
CAS
Google Scholar
Sambrook J, Russell DW: Molecular Cloning: a Laboratory Manual. Cold Spring Harbor: Cold Spring Harbor Laboratory Press 2001.
Google Scholar
Remans T, Smeets K, Opdenakker K, Mathijsen D, Vangronsveld J, Cuypers A: Normalisation of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations. Planta. 2008, 227: 1343-1349. 10.1007/s00425-008-0706-4.
Article
PubMed
CAS
Google Scholar
Jain M, Nijhawan A, Tyagi AK, Khurana JP: Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun. 2006, 345: 646-651. 10.1016/j.bbrc.2006.04.140.
Article
PubMed
CAS
Google Scholar
Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262.
Article
PubMed
CAS
Google Scholar
Finckh U, Lingenfelter PA, Myerson D: Producing single-stranded DNA probes with the Taq DNA polymerase: a high yield protocol. BioTechniques. 1991, 10: 35-36. 38-39
PubMed
CAS
Google Scholar
Cheung MY, Zeng NY, Tong SW, Li FWY, Xue Y, Zhao KJ, Wang C, Zhang Q, Fu Y, Sun Z, et al: Constitutive expression of a rice GTPase-activating protein induces defense responses. New Phytol. 2008, 179: 530-545. 10.1111/j.1469-8137.2008.02473.x.
Article
PubMed
CAS
Google Scholar
Zhang Q, Shi AN, Yang WC, Wang CL: Breeding of three near-isogenic Japonica rice lines with different major genes for resistance to bacterial blight. Acta Agronom Sin. 1996, 22: 135-141.
Google Scholar
Katagiri F, Thilmony R, He SY: The Arabidopsis thaliana-Pseudomonas syringae interaction. The Arabidopsis Book. Edited by: Somerville CR, Meyerowitz EM. Rockville, MD: American Society of Plant Biologists, 39: 2002.
Google Scholar
Yu HX, Liu QQ, Wang L, Zhao ZP, Xu L, Huang BL, Gong ZY, Tang SZ, Gu NH: Breeding of selectable marker-free transgenic rice lines containing AP1 gene with enhanced disease resistance. Sci Agric Sin. 2006, 5: 805-811.
CAS
Google Scholar
Rooke L, Byrne D, Salgueiro S: Marker gene expression driven by the maize ubiquitin promoter in transgenic wheat. Ann Appl Biol. 2000, 136: 167-172. 10.1111/j.1744-7348.2000.tb00022.x.
Article
CAS
Google Scholar
Hiei Y, Ohta S, Komari T, Kumashiro T: Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 1994, 6: 271-282. 10.1046/j.1365-313X.1994.6020271.x.
Article
PubMed
CAS
Google Scholar
Zhu L, Fu YP, Liu WZ, Hu GC, Si HM, Tang KX, Sun ZX: Rapidly obtaining the marker-free transgenic rice with three target genes by co-transformation an anther culture. Chin J Rice Sci. 2007, 14: 239-247. 10.1016/S1672-6308(08)60001-3.
Article
Google Scholar
Brears T, Liu C, Knight TJ, Coruzzi GM: Ectopic overexpression of asparagine synthetase in transgenic tobacco. Plant Physiol. 1993, 103: 1285-1290.
PubMed
CAS
PubMed Central
Google Scholar
Bent AF: Arabidopsis in planta transformation. Uses, mechanisms, and prospects for transformation of other species. Plant Physiol. 2000, 124: 1540-1547. 10.1104/pp.124.4.1540.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lam SK, Siu CL, Hillmer S, Jang S, An G, Robinson DG, Jiang L: Rice SCAMP1 defines clathrin-coated, trans-Golgi-located tubular-vesicular structures as an early endosome in tobacco BY-2 cells. Plant Cell. 2007, 19: 296-319. 10.1105/tpc.106.045708.
Article
PubMed
CAS
PubMed Central
Google Scholar
Koch E, Slusarenko A: Arabidopsis is susceptible to infection by a downy mildew fungus. Plant Cell. 1990, 2: 437-445. 10.1105/tpc.2.5.437.
Article
PubMed
CAS
PubMed Central
Google Scholar
Claros MG, Heijne G: TopPred II: an improved software for membrane protein structure predictions. Comp Appl Biosci. 1994, 10: 685-686.
PubMed
CAS
Google Scholar