Goswami RS, Kistler HC: Heading for disaster Fusarium graminearum on cereal crops. Mol Plant Pathol. 2004, 5 (6): 515-525. 10.1111/j.1364-3703.2004.00252.x.
Article
PubMed
CAS
Google Scholar
Desmond OJ, Manners JM, Stephens AE, Maclean DJ, Schenk PM, Gardiner DM, Munn AL, Kazan K: The Fusarium mycotoxin deoxynivalenol elicits hydrogen peroxide production, programmed cell death and defence responses in wheat. Mol Plant Pathol. 2008, 9 (4): 435-445. 10.1111/j.1364-3703.2008.00475.x.
Article
PubMed
CAS
Google Scholar
Ilgen P, Maier F, Schäfer W: Trichothecenes and lipases are host-induced and secreted virulence factors of Fusarium graminearum. Cereal Research Communications. 2008, 36 (0): 421-428. 10.1556/CRC.36.2008.Suppl.B.35.
Article
Google Scholar
Jansen C, von Wettstein D, Schafer W, Kogel K-H, Felk A, Maier FJ: Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum. Proc Natl Acad Sci USA. 2005, 102 (46): 16892-16897. 10.1073/pnas.0508467102.
Article
PubMed
CAS
PubMed Central
Google Scholar
Proctor RH, Hohn TM, McCormick SP: Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Mol Plant-Microbe Interact. 1995, 8 (4): 593-601.
Article
PubMed
CAS
Google Scholar
Pestka JJ: Deoxynivalenol: Toxicity, mechanisms and animal health risks. Anim Feed Sci Technol. 2007, 137 (3-4): 283-298. 10.1016/j.anifeedsci.2007.06.006.
Article
CAS
Google Scholar
van Egmond H, Schothorst R, Jonker M: Regulations relating to mycotoxins in food. Anal Bioanal Chem. 2007, 389 (1): 147-157. 10.1007/s00216-007-1317-9.
Article
PubMed
Google Scholar
Boutigny A-L, Richard-Forget F, Barreau C: Natural mechanisms for cereal resistance to the accumulation of Fusarium trichothecenes. Eur J Plant Pathol. 2008, 121 (4): 411-423. 10.1007/s10658-007-9266-x.
Article
CAS
Google Scholar
Yuen GY, Schoneweis SD: Strategies for managing Fusarium head blight and deoxynivalenol accumulation in wheat. Int J Food Microbiol. 2007, 119 (1-2): 126-130. 10.1016/j.ijfoodmicro.2007.07.033.
Article
PubMed
CAS
Google Scholar
Walter S, Nicholson P, Doohan FM: Action and reaction of host and pathogen during Fusarium head blight disease. New Phytol. 2010, 185 (1): 54-66. 10.1111/j.1469-8137.2009.03041.x.
Article
PubMed
CAS
Google Scholar
Mudge AM, Dill-Macky R, Dong Y, Gardiner DM, White RG, Manners JM: A role for the mycotoxin deoxynivalenol in stem colonisation during crown rot disease of wheat caused by Fusarium graminearum and Fusarium pseudograminearum. Physiol Mol Plant Pathol. 2006, 69 (1-3): 73-85. 10.1016/j.pmpp.2007.01.003.
Article
CAS
Google Scholar
Voigt CA, Scheidt B, Gácser A, Kassner H, Lieberei R, Schäfer W, Salomon S: Enhanced mycotoxin production of a lipase-deficient Fusarium graminearum mutant correlates to toxin-related gene expression. Eur J Plant Pathol. 2007, 117 (1): 1-12. 10.1007/s10658-006-9063-y.
Article
CAS
Google Scholar
Ponts N, Couedelo L, Pinson-Gadais L, Verdal-Bonnin M-N, Barreau C, Richard-Forget F: Fusarium response to oxidative stress by H2O2 is trichothecene chemotype-dependent. FEMS Microbiol Lett. 2009, 293 (2): 255-262. 10.1111/j.1574-6968.2009.01521.x.
Article
PubMed
CAS
Google Scholar
Jiao F, Kawakami A, Nakajima T: Effects of different carbon sources on trichothecene production and Tri gene expression by Fusarium graminearum in liquid culture. FEMS Microbiol Lett. 2008, 285 (2): 212-219. 10.1111/j.1574-6968.2008.01235.x.
Article
PubMed
CAS
Google Scholar
Gardiner DM, Osborne S, Kazan K, Manners JM: Low pH regulates the production of deoxynivalenol by Fusarium graminearum. Microbiology. 2009, 155 (9): 3149-3156. 10.1099/mic.0.029546-0.
Article
PubMed
CAS
Google Scholar
Merhej J, Boutigny AL, Pinson-Gadais L, Richard-Forget F, Barreau C: Acidic pH as a determinant of TRI gene expression and trichothecene B biosynthesis in Fusarium graminearum. Food Addit Contam Part A-Chem. 2010, 27 (5): 710-717. 10.1080/19440040903514531.
Article
CAS
Google Scholar
Ochiai N, Tokai T, Takahashi-Ando N, Fujimura M, Kimura M: Genetically engineered Fusarium as a tool to evaluate the effects of environmental factors on initiation of trichothecene biosynthesis. FEMS Microbiol Lett. 2007, 275 (1): 53-61. 10.1111/j.1574-6968.2007.00869.x.
Article
PubMed
CAS
Google Scholar
Gardiner DM, Kazan K, Manners JM: Nutrient profiling reveals potent inducers of trichothecene biosynthesis in Fusarium graminearum. Fungal Genet Biol. 2009, 46 (8): 604-613. 10.1016/j.fgb.2009.04.004.
Article
PubMed
CAS
Google Scholar
Desjardins AE, Hohn TM, McCormick SP: Trichothecene biosynthesis in Fusarium species: chemistry, genetics, and significance. Microbiol Mol Biol Rev. 1993, 57 (3): 595-604.
CAS
Google Scholar
Alcázar R, Marco F, Cuevas JC, Patron M, Ferrando A, Carrasco P, Tiburcio AF, Altabella T: Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett. 2006, 28 (23): 1867-1876.
Article
PubMed
Google Scholar
Bouchereau A, Aziz A, Larher F, Martin-Tanguy J: Polyamines and environmental challenges: recent development. Plant Sci. 1999, 140 (2): 103-125. 10.1016/S0168-9452(98)00218-0.
Article
CAS
Google Scholar
Paulus TJ, Kiyono P, Davis RH: Polyamine-deficient Neurospora crassa mutants and synthesis of cadaverine. J Bacteriol. 1982, 152 (1): 291-297.
PubMed
CAS
PubMed Central
Google Scholar
Lee YS, Cho YD: Identification of essential active-site residues in ornithine decarboxylase of Nicotiana glutinosa decarboxylating both L-ornithine and L-lysine. Biochem J. 2001, 360 (3): 657-665. 10.1042/0264-6021:3600657.
Article
PubMed
CAS
PubMed Central
Google Scholar
Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio A: Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta. 2010, 231 (6): 1237-1249.
Article
PubMed
Google Scholar
Walters DR: Polyamines and plant disease. Phytochemistry. 2003, 64 (1): 97-107. 10.1016/S0031-9422(03)00329-7.
Article
PubMed
CAS
Google Scholar
Yoda H, Fujimura K, Takahashi H, Munemura I, Uchimiya H, Sano H: Polyamines as a common source of hydrogen peroxide in host- and nonhost hypersensitive response during pathogen infection. Plant Mol Biol. 2009, 70 (1-2): 103-112. 10.1007/s11103-009-9459-0.
Article
PubMed
CAS
Google Scholar
Parker D, Beckmann M, Zubair H, Enot DP, Caracuel-Rios Z, Overy DP, Snowdon S, Talbot NJ, Draper J: Metabolomic analysis reveals a common pattern of metabolic re-programming during invasion of three host plant species by Magnaporthe grisea. Plant J. 2009, 59 (5): 723-737. 10.1111/j.1365-313X.2009.03912.x.
Article
PubMed
CAS
Google Scholar
Edreva A: Tobacco polyamines as affected by stresses induced by different pathogens. Biol Plant. 1997, 40 (2): 317-320. 10.1023/A:1001093209229.
Article
CAS
Google Scholar
Waie B, Rajam MV: Effect of increased polyamine biosynthesis on stress responses in transgenic tobacco by introduction of human S-adenosylmethionine gene. Plant Sci. 2003, 164 (5): 727-734. 10.1016/S0168-9452(03)00030-X.
Article
CAS
Google Scholar
Jin S, Yoshida M: Antifungal compound, feruloylagmatine, induced in winter wheat exposed to a low temperature. Biosci Biotechnol Biochem. 2000, 64 (8): 1614-1617. 10.1271/bbb.64.1614.
Article
PubMed
CAS
Google Scholar
Smith TA, Best GR: Distribution of the hordatines in barley. Phytochemistry. 1978, 17 (7): 1093-1098. 10.1016/S0031-9422(00)94295-X.
Article
CAS
Google Scholar
Peremarti A, Bassie L, Yuan D, Pelacho A, Christou P, Capell T: Transcriptional regulation of the rice arginine decarboxylase (Adc1) and S-adenosylmethionine decarboxylase (Samdc) genes by methyl jasmonate. Plant Physiol Biochem. 2010, 48 (7): 553-559. 10.1016/j.plaphy.2010.01.014.
Article
PubMed
CAS
Google Scholar
Haggag WM, Abd-El-Kareem F: Methyl jasmonate stimulates polyamines biosynthesis and resistance against leaf rust in wheat plants. Arch Phytopathol Plant Protect. 2009, 42 (1): 16-31. 10.1080/03235400600914355.
Article
CAS
Google Scholar
Walters D, Cowley T, Mitchell A: Methyl jasmonate alters polyamine metabolism and induces systemic protection against powdery mildew infection in barley seedlings. J Exp Bot. 2002, 53 (369): 747-756. 10.1093/jexbot/53.369.747.
Article
PubMed
CAS
Google Scholar
Peeters KMU, Geuns JMC, Van Laere AJ: Free polyamines in senescing wheat (Triticum aestivum L.). J Exp Bot. 1993, 44 (11): 1709-1715. 10.1093/jxb/44.11.1709.
Article
CAS
Google Scholar
Yang J, Yunying C, Zhang H, Liu L, Zhang J: Involvement of polyamines in the post-anthesis development of inferior and superior spikelets in rice. Planta. 2008, 228 (1): 137-149. 10.1007/s00425-008-0725-1.
Article
PubMed
CAS
Google Scholar
Bencsik K, Kremmer T, Boldizsár M, Tamás J, Mák M, Páldi E: High-performance liquid chromatographic determination and standardization of agmatine. J Chromatogr. 1998, 824 (2): 175-180. 10.1016/S0021-9673(97)00193-3.
Article
CAS
Google Scholar
Urano K, Hobo T, Shinozaki K: Arabidopsis ADC genes involved in polyamine biosynthesis are essential for seed development. FEBS Lett. 2005, 579 (6): 1557-1564. 10.1016/j.febslet.2005.01.048.
Article
PubMed
CAS
Google Scholar
Urano K, Yoshiba Y, Nanjo T, Ito T, Yamaguchi-Shinozaki K, Shinozaki K: Arabidopsis stress-inducible gene for arginine decarboxylase AtADC2 is required for accumulation of putrescine in salt tolerance. Biochem Biophys Res Commun. 2004, 313 (2): 369-375. 10.1016/j.bbrc.2003.11.119.
Article
PubMed
CAS
Google Scholar
Perez-Amador MA, Leon J, Green PJ, Carbonell J: Induction of the arginine decarboxylase ADC2 gene provides evidence for the involvement of polyamines in the wound response in Arabidopsis. Plant Physiol. 2002, 130 (3): 1454-1463. 10.1104/pp.009951.
Article
PubMed
CAS
PubMed Central
Google Scholar
Desmond OJ, Edgar CI, Manners JM, Maclean DJ, Schenk PM, Kazan K: Methyl jasmonate induced gene expression in wheat delays symptom development by the crown rot pathogen Fusarium pseudograminearum. Physiol Mol Plant Pathol. 2005, 67 (3-5): 171-179. 10.1016/j.pmpp.2005.12.007.
Article
CAS
Google Scholar
Pritsch C, Muehlbauer GJ, Bushnell WR, Somers DA, Vance CP: Fungal development and induction of defense response genes during early infection of wheat spikes by Fusarium graminearum. Mol Plant-Microbe Interact. 2000, 13 (2): 159-169. 10.1094/MPMI.2000.13.2.159.
Article
PubMed
CAS
Google Scholar
Ilgen P, Hadeler B, Maier FJ, SchÃfer W: Developing kernel and rachis node induce the trichothecene pathway of Fusarium graminearum during wheat head infection. Mol Plant-Microbe Interact. 2009, 22 (8): 899-908. 10.1094/MPMI-22-8-0899.
Article
PubMed
CAS
Google Scholar
Li H, Xie G, Ma J, Liu G, Wen S, Ban T, Chakraborty S, Liu C: Genetic relationships between resistances to Fusarium head blight and crown rot in bread wheat (Triticum aestivum L.). Theor Appl Genet. 2010, 121 (5): 941-950. 10.1007/s00122-010-1363-0.
Article
PubMed
Google Scholar
Jia H, Cho S, Muehlbauer GJ: Transcriptome analysis of a wheat near-isogenic line pair carrying Fusarium bead blight resistant and susceptible alleles. Mol Plant-Microbe Interact. 2009, 22 (11): 1366-1378. 10.1094/MPMI-22-11-1366.
Article
PubMed
CAS
Google Scholar
Boddu J, Cho S, Kruger WM, Muehlbauer GJ: Transcriptome analysis of the barley-Fusarium graminearum interaction. Mol Plant-Microbe Interact. 2006, 19 (4): 407-417. 10.1094/MPMI-19-0407.
Article
PubMed
CAS
Google Scholar
Wise RP, Caldo RA, Hong L, Shen L, Cannon E, Dickerson JA: BarleyBase/PLEXdb: A Unified Expression Profiling Database for Plants and Plant Pathogens. Plant Bioinformatics. Edited by: Edwards D. Totowa, NJ: Humana Press, 2008, 406: 347-363. full_text.
Google Scholar
Bai GH, Desjardins AE, Plattner RD: Deoxynivalenol non-producing Fusarium graminearum causes initial infection, but does not cause disease spread in wheat spikes. Mycopathologia. 2002, 153 (2): 91-98. 10.1023/A:1014419323550.
Article
PubMed
CAS
Google Scholar
Ohe M, Scoccianti V, Bagni N, Tassoni A, Matsuzaki S: Putative occurrence of lysine decarboxylase isoforms in soybean (Glycine max) seedlings. Amino Acids. 2009, 36 (1): 65-70. 10.1007/s00726-008-0029-6.
Article
PubMed
CAS
Google Scholar
Akinsanmi OA, Mitter V, Simpfendorfer S, Backhouse D, Chakraborty S: Identity and pathogenicity of Fusarium spp. isolated from wheat fields in Queensland and northern New South Wales. Aust J Agric Res. 2004, 55 (1): 97-107. 10.1071/AR03090.
Article
Google Scholar
Gardiner DM, Kazan K, Manners JM: Novel genes of Fusarium graminearum that negatively regulate deoxynivalenol production and virulence. Mol Plant-Microbe Interact. 2009, 22 (12): 1588-1600. 10.1094/MPMI-22-12-1588.
Article
PubMed
CAS
Google Scholar
Mitchell RAC, Castells-Brooke N, Taubert J, Verrier PJ, Leader DJ, Rawlings CJ: Wheat Estimated Transcript Server (WhETS): a tool to provide best estimate of hexaploid wheat transcript sequence. Nucl Acids Res. 2007, 35 (suppl_2): W148-151. 10.1093/nar/gkm220.
Article
PubMed
PubMed Central
Google Scholar
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG: Clustal W and Clustal × version 2.0. Bioinformatics. 2007, 23 (21): 2947-2948. 10.1093/bioinformatics/btm404.
Article
PubMed
CAS
Google Scholar
Rozen S, Skaletsky HJ: Primer3 on the WWW for general users and for biologist programmers. Bioinformatics Methods and Protocols: Methods in Molecular Biology. Edited by: Krawetz S, Misener S. Totowa, NJ: Humana Press, 2000:365-386.
Google Scholar