USDA: Floriculture Crops, NASS. 2006
Google Scholar
Grey-Wilson C: Impatiens of Africa: morphology, pollination and pollinators, ecology, phytogeography, hybridisation, keys and a systematic treatment of all African species: with a note on collecting and cultivation Balkema, Rotterdam: A. A.1980.
Google Scholar
Law MD, Moyer JW: A tomato spotted wilt-like virus with a serologically distinct N-protein. J Genl Virol. 1990, 71: 933-938. 10.1099/0022-1317-71-4-933.
Article
CAS
Google Scholar
Deangelis JD, Sether DM, Rossignol PA: Transmission of impatiens necrotic spot virus in peppermint by western flower thrips (Thysanoptera, Thripidae). J Econ Entomol. 1994, 87: 197-201.
Article
Google Scholar
Vaira AM, Roggero P, Luisoni E, Masenga V, Milne RG, Lisa V: Characterization of 2 Tospoviruses in Italy - Tomato Spotted Wilt and Impatiens Necrotic Spot. Plant Pathol. 1993, 42: 530-542. 10.1111/j.1365-3059.1993.tb01533.x.
Article
CAS
Google Scholar
Stephens LC, Krell SL, Weigle JL: In vitro-propagation of Java, New-Guinea, and Java-x-New-Guinea Impatiens. Hortscience. 1985, 20: 362-363.
CAS
Google Scholar
Han K, Stephens LC: Growth-regulators affect in vitro-propagation of 2 interspecific Impatiens hybrids. Sci Hort. 1987, 32: 307-313. 10.1016/0304-4238(87)90096-3.
Article
CAS
Google Scholar
Nikolova RV, Lall N, Bosa AJN: An assessment of the conditions for the rapid propagation of Impatiens flanaganae in-vivo and in-vitro. Acta Hortic. 1996, 440: 633-638.
Article
Google Scholar
Witomska M, Lukaszewska A: Effect of cytokinin concentration and explant type on micropropagation of Impatiens × walleriana Hook. Annals of Warsaw Agricultural University, Horticulture (Landscape Architecture). 2003, 24: 35-40.
Google Scholar
Han KC, Stephens LC: Carbohydrate and nitrogen-sources affect respectively in vitro germination of immature ovules and early seedling growth of Impatiens platypetala Lindl. Plant Cell Tiss Org Cult. 1992, 31: 211-214.
CAS
Google Scholar
Han KC: In-vitro shoot regeneration from cotyledons of immature ovules of Impatiens platypetala Lindl. In Vitro Cell Dev Biol-Plant. 1994, 30P: 108-112.
Article
Google Scholar
He YK, Xi T: Relationship between the accumulation of anthocyanin and phenylalanine ammonia lyase in Impatiens balsamina. Plant Physiol Commun. 1989, 2: 35-38.
Google Scholar
Josekutty PC, Mpikeleli P, Nikolova RV: Calcium mediated callus induction in Impatiens flanaganiae. Phyton-Int J Exp Bot. 1998, 63: A-199.
Google Scholar
Arisumi T: In vitro culture of embryos and ovules of certain incompatible selfs and crosses among Impatiens species. J Am Soc Hort Sci. 1980, 105: 629-631.
Google Scholar
Arisumi T: Rescuing abortive Impatiens hybrids through aseptic culture of ovules. J Am Soc Hort Sci. 1985, 110: 273-276.
Google Scholar
Xiang TH, Wang LL, Pang JL, Chen M, Xu C: Hairy root induced by wild-type Agrobacterium rhizogenes K599 in soybean, cucumber and garden balsam in vivo. Hereditas. 2005, 27: 783-786.
PubMed
CAS
Google Scholar
Milosevic S, Subotic A, Cingel A, Jevremovic S, Ninkovic S: Efficient genetic transformation of Impatiens hawkerii Bull. (Balsamiaceae) Using Agrobacterium rhizogenes. Arch Biol Sci. 2009, 61: 467-474. 10.2298/ABS0903467M.
Article
Google Scholar
Taha AM, Wagiran A, Ghazali H, Huyop F, Parveez GKA: Optimization and transformation of garden balsam, Impatiens balsamina, mediated by microprojectile bombardment. Biotechnology. 2009, 8: 1-12. 10.3923/biotech.2009.44.52.
Article
CAS
Google Scholar
Chou TS: Production of transgenic impatiens. United States Patent No. 6,121,511. 2000
Google Scholar
Paz MM, Shou HX, Guo ZB, Zhang ZY, Banerjee AK, Wang K: Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant. Euphytica. 2004, 136: 167-179. 10.1023/B:EUPH.0000030670.36730.a4.
Article
CAS
Google Scholar
Anuradha TS, Jami SK, Datla RS, Kirti PB: Genetic transformation of peanut (Arachis hypogaea L.) using cotyledonary node as explant and a promoterless gus::nptII fusion gene based vector. J Biosci. 2006, 31: 235-246. 10.1007/BF02703916.
Article
PubMed
CAS
Google Scholar
Xue RG, Xie HF, Zhang B: A multi-needle-assisted transformation of soybean cotyledonary node cells. Biotechnol Lett. 2006, 28: 1551-1557. 10.1007/s10529-006-9123-6.
Article
PubMed
CAS
Google Scholar
Muruganantham M, Amutha S, Selvaraj N, Vengadesan G, Ganapathi A: Efficient Agrobacterium-mediated transformation of Vigna mungo using immature cotyledonary-node explants and phosphinothricin as the selection agent. In Vitro Cell Dev Biol-Plant. 2007, 43: 550-557. 10.1007/s11627-007-9060-7.
Article
CAS
Google Scholar
Aslam M, Singh R, Anandhan S, Pande V, Ahmed Z: Development of a transformation protocol for Tecomella undulata (Smith) Seem from cotyledonary node explants. Sci Hort. 2009, 121: 119-121. 10.1016/j.scienta.2009.01.007.
Article
CAS
Google Scholar
Dang W, Wei ZM: High frequency plant regeneration from the cotyledonary node of common bean. Biol Plant. 2009, 53: 312-316. 10.1007/s10535-009-0056-5.
Article
CAS
Google Scholar
Barik DP, Naik SK, Mohapatra U, Chand PK: High-frequency plant regeneration by in vitro shoot proliferation in cotyledonary node explants of grasspea (Lathyrus sativus L.). In Vitro Cell Dev Biol-Plant. 2004, 40: 467-470. 10.1079/IVP2004549.
Article
CAS
Google Scholar
Jha AK, Prakash S, Jain N, Nanda K, Gupta SC: Micropropagation of Sesbania rostrata from the cotyledonary node. Biol Plant. 2004, 48: 289-292. 10.1023/B:BIOP.0000033458.88441.67.
Article
Google Scholar
Sunagawa H, Agarie S, Umemoto M, Makishi Y, Nose A: Effect of urea-type cytokinins on the adventitious shoots regeneration from cotyledonary node explant in the common ice plant, Mesembryanthemum crystallinum. Plant Production Science. 2007, 10: 47-56. 10.1626/pps.10.47.
Article
CAS
Google Scholar
Li W, Dong W, Zhao Dl, Guo GQ, Zheng GC: TDZ induced high frequency of plantlet regeneration from axillary node of Stachys sieboldii. Xibei Zhiwu Xuebao. 2002, 22: 965-969.
CAS
Google Scholar
Debnath SC: A two-step procedure for adventitious shoot regeneration from in vitro-derived lingonberry leaves: Shoot induction with TDZ and shoot elongation using zeatin. Hortscience. 2005, 40: 189-192.
CAS
Google Scholar
Mundhara R, Rashid A: TDZ-induced triple-response and shoot formation on intact seedlings of Linum, putative role of ethylene in regeneration. Plant Sci. 2006, 170: 185-190. 10.1016/j.plantsci.2005.06.015.
Article
CAS
Google Scholar
Shi XL, Han HP, Shi WL, Li YX: NaCl and TDZ are two key factors for the improvement of In vitro regeneration rate of Salicornia europaea L. J Integr Plant Biol. 2006, 48: 1185-1189. 10.1111/j.1744-7909.2006.00342.x.
Article
CAS
Google Scholar
Yucesan B, Turker AU, Gurel E: TDZ-induced high frequency plant regeneration through multiple shoot formation in witloof chicory (Cichorium intybus L.). Plant Cell Tiss Org Cult. 2007, 91: 243-250. 10.1007/s11240-007-9290-8.
Article
CAS
Google Scholar
Basalma D, Uranbey S, Gurlek D, Ozcan S: TDZ-induced plant regeneration in Astragalus cicer L. Afr J Biotechnol. 2008, 7: 955-959.
CAS
Google Scholar
Basalma D, Uranbey S, Mirici S, Kolsarici O: TDZ × IBA induced shoot regeneration from cotyledonary leaves and in vitro multiplication in safflower (Carthamus tinctorius L.). Afr J Biotechnol. 2008, 7: 960-966.
CAS
Google Scholar
Zhihui S, Tzitzikas M, Raemakers K, Zhengqiang M, Visser R: Effect of TDZ on plant regeneration from mature seeds in pea (Pisum sativum). In Vitro Cell Dev Biol-Plant. 2009, 45: 776-782. 10.1007/s11627-009-9212-z.
Article
Google Scholar
Lincy A, Sasikumar B: Enhanced adventitious shoot regeneration from aerial stem explants of ginger using TDZ and its histological studies. Turk J Bot. 2010, 34: 21-29.
CAS
Google Scholar
Cheng M, Hu T, Layton J, Liu CN, Fry JE: Desiccation of plant tissues post-Agrobacterium infection enhances T-DNA delivery and increases stable transformation efficiency in wheat. In Vitro Cell Dev Biol-Plant. 2003, 39: 595-604. 10.1079/IVP2003471.
Article
CAS
Google Scholar
Cheng M, Lowe BA, Spencer TM, Ye X, Armstrong CL: Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cell Dev Biol-Plant. 2004, 40: 31-45. 10.1079/IVP2003501.
Article
Google Scholar
Dan Y: Biological Functions of Antioxidants in Plant Transformation. In Vitro Cell Dev Biol-Plant. 2008, 44: 149-161. 10.1007/s11627-008-9110-9.
Article
CAS
Google Scholar
Dan Y, Armstrong CL, Dong J, Feng X, Fry JE, Keithly GE, Martinell BJ, Roberts GA, Smith LA, Tan L, Duncan DR: Lipoic Acid----A Unique Plant Transformation Enhancer. In Vitro Cell Dev Biol-Plant. 2009, 45: 630-638. 10.1007/s11627-009-9227-5.
Article
CAS
Google Scholar
Dan Y, Yan H, Munyikwa T, Dong J, Zhang Y, Armstrong CL: MicroTom---A high-throughput model transformation system for functional genomics. Plant Cell Rep. 2006, 25: 432-44. 10.1007/s00299-005-0084-3.
Article
PubMed
CAS
Google Scholar
Baxter A: Regeneration and transformation of impatiens walleriana using cotyledonary node culture. Virginia Polytechnic Institute and State University, Blacksburg, MS Thesis 2005.
Google Scholar
Maziah M, Sariah M, Sreeramanan S: Transgenic banana Rastali (AAB) with β-1, 3-glucanase gene for tolerance to Fusarium wilt race 1 disease via Agrobacterium-mediated transformation system. Plant Pathol J. 2007, 6: 271-282. 10.3923/ppj.2007.271.282.
Article
CAS
Google Scholar
Gechev ST, Jacques Hille J: Hydrogen peroxide as a signal controlling plant programmed cell death. J Cell Biol. 2005, 168: 17-20. 10.1083/jcb.200409170.
Article
PubMed
CAS
PubMed Central
Google Scholar
Murashige T, Skoog F: A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962, 15: 473-497. 10.1111/j.1399-3054.1962.tb08052.x.
Article
CAS
Google Scholar
Molinier J, Himber C, Hahne G: Use of green fluorescent protein for detection of transformed shoots and homozygous offspring. Plant Cell Rep. 2000, 19: 219-223. 10.1007/s002990050002.
Article
CAS
Google Scholar