Li A, Hong S. Fagopyrum Miller. In: Wu ZY, editor. Flora of China. Beijing: Science Press; 2003. p. 320–3.
Google Scholar
Chen QF, Huang XY, Li HY, Li J, Cui YS. Recent progress in perennial buckwheat development. Sustainability. 2018;10:536.
Article
CAS
Google Scholar
Tang Y, Shao JR, Zhou ML. A taxonomic revision of Fagopyrum Mill from China. Plant Genet Resour. 2019;20:646–53.
CAS
Google Scholar
Ohsako T, Li CY. Classification and systematics of the Fagopyrum species. Breed Sci. 2020;70:93–100.
Article
PubMed
CAS
Google Scholar
Zhang KX, Fan Y, Weng WF, Tang Y, Zhou ML. Fagopyrum longistylum (Polygonaceae), a new species from Sichuan. China Phytotaxa. 2021;482:173–82.
Article
Google Scholar
Suvorova G, Zhou ZL. Distribution of cultivated buckwheat resources in the world. In: Zhou ML, editor. Buckwheat Germplasm in the world. San Diego: ELSEVIER, London: Academic Press; 2018. p. 9–20.
Google Scholar
Wijngaard HH, Arendt EK. Buckwheat. Cereal Chem. 2006;83:391–401.
Article
CAS
Google Scholar
Nina F, Janko R, Jože KI, Wang Z, Zhang Z, Ivan K. Tartary buckwheat (Fagopyrum tataricum Gaertn.) as a source of dietary rutin and quercitrin. J Agric Food Chem. 2003;51:6452–5.
Article
CAS
Google Scholar
Chinese Pharmacopoeia Commission. Fagopyri Dibotryis Rhizoma. In: Pharmacopoeia of People’s Republic of China. Beijing: China Medical Science Press; 2015. p. 5–218.
Google Scholar
Yasui Y, Hirakawa H, Ueno M, Matsui K, Katsube-Tanaka T, Yang SJ, et al. Assembly of the draft genome of buckwheat and its applications in identifying agronomically useful genes. DNA Res. 2016;23:215–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang KX, He M, Fan Y, Zhao H, Gao B, Yang KL, et al. Resequencing of global Tartary buckwheat accessions reveals multiple domestication events and key loci associated with agronomic traits. Genome Biol. 2020;22:23.
Article
CAS
Google Scholar
Zhou ML, Wang CL, Wang DZ, Zheng YD, Li FL, Zhu XM, et al. Phylogenetic relationship of four new species related to southwestern Sichuan Fagopyrum based on morphological and molecular characterization. Biochem Syst Ecol. 2014;57:403–9.
Article
CAS
Google Scholar
Gross MH. Remarquessur les Polygoneas de I’Asie Orientale. Bull Torrey Bot Club. 1913;23:7–32.
Google Scholar
Roberty G, Vautier S. Les genres de Polygonacées Convolvulacées (esquisse). Boissiera. 1964;10:7–128.
Google Scholar
Yasui Y, Ohnishi O. Phylogenetic relationships among Fagopyrum species revealed by the nucleotide sequences of the ITS region of the unclear rRNA gene. Genes Genet Syst. 1998;73:201–10.
Article
CAS
PubMed
Google Scholar
Yasui Y, Ohnishi O. Interspecific relationships in Fagopyrum (Polygonaceae) revealed by the nucleotide sequences of the rbcL and accD genes and their intergenic region. Am J Bot. 1998;85:1134–42.
Article
CAS
PubMed
Google Scholar
Huang Y, Li ZQ, Wang CL, Zou CY, Wen W, Shao JR, et al. psbE-psbL and ndhA Intron, The Promising Plastid DNA barcode of Fagopyrum. Int J Mol Sci. 2019;20:3455.
Article
CAS
PubMed Central
Google Scholar
Ohsako T, Ohnishi O. New Fagopyrum species revealed by morphological. Genes Genet Syst. 1998;73:85–94.
Article
CAS
Google Scholar
Ohsako T, Ohnishi O. Intra- and interspecific phylogeny of wild Fagopyrum (Polygonaceae) species based on nucleotide sequences of noncoding regions in chloroplast DNA. Am J Bot. 2000;87:573–82.
Article
CAS
PubMed
Google Scholar
Ohsako T, Yamane K, Ohnishi O. Two new Fagopyrum (Polygonaceae) species, F. gracilipedoides and F. jinshaense from Yunnan China. Genes Genet Syst. 2002;77:99–408.
Article
Google Scholar
Tang Y, Zhou ML, Bai DQ, Shao JR, Zhu XM, Wang DZ, et al. Fagopyrum pugense (Polygonaceae), a new species from Sichuan. China Novon. 2010;20:239–42.
Article
Google Scholar
Shao JR, Zhou ML, Zhu XM, Wang DZ, Bai DQ. Fagopyrum wenchuanense and Fagopyrum qiangcai, two new species of Polygonaceae from Sichuan. China Novon. 2011;21:256–61.
Article
Google Scholar
Hou LL, Zhou ML, Zhang Q, Qi LP, Yang XB, Tang Y, et al. Fagopyrum luojishanense, a new species of Polygonaceae from Sichuan. China Novon. 2015;24:22–6.
Article
Google Scholar
Zhou ML, Zhang Q, Zheng YD, Tang Y, Li FL, Zhu XM, et al. Fagopyrum hailuogouense (Polygonaceae), one new species from Sichuan. China Novon. 2015;24:222–4.
Article
Google Scholar
Jin JW, Li DR, Chen SF, Li B. A common Bistorta was misidentified as a novel species in Fagopyrum (Polygonaceae): the confirmation of the taxonomic identify of F. hailuogouense by morphological and molecular evidences. Phytotaxa. 2018;348:221.
Article
Google Scholar
Zhang YJ, Li DZ. Advances in phylogenomics based on complete chloroplast genomes. Pl Divers Resour. 2011;33:365–75.
CAS
Google Scholar
Gitzendanner MA, Soltis PS, Yi TS, Li DZ, Soltis DE. Plastome phylogenetics: 30 years of inferences into plant evolution. Adv Bot Res. 2018;85:293–313.
Article
CAS
Google Scholar
Li HT, Yi TS, Gao LM, Ma PF, Li DZ. Origin of angiosperms and the puzzle of the Jurassic gap. Nat Plants. 2019;5:461–70.
Article
PubMed
Google Scholar
Ma Q, Du YJ, Chen N, Zhang LY, Li JH, Fu CX. Phylogeography of Davidia involucrata (Davidiaceae) inferred from cpDNA haplotypes and nSSR data. Syst Bot. 2015;40:796–810.
Article
Google Scholar
Zeb U, Dong WL, Zhang TT, Wang RN, Shahzad K, Ma XF, et al. Comparative plastid genomics of Pinus species: insights into sequence variations and phylogenetic relationships. J Syst Evol. 2019;58:118–32.
Article
Google Scholar
Liu F, Fan WS, Yang JB, Xiang CL, Mower JP, Li DZ, et al. Episodic and GC-biased bursts of intragenomic and interspecific synonymous divergence in Ajugoideae (Llamiaceae) mitogenomes. New Phytol. 2020;228:1107–14.
Article
CAS
PubMed
Google Scholar
Maier RM, Neckermann Kai, Igloi GL, Kossel H. Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J Mol Biol. 1995;251:614–28.
Article
CAS
PubMed
Google Scholar
Kim GB, Lim CE, Kim JS, Kim K, Lee JH, Yu HJ, et al. Comparative chloroplast genome analysis of Artemisia (Asteraceae) in East Asia: insights into evolutionary divergence and phylogenomic implications. BMC Genom. 2020;21:415.
Article
CAS
Google Scholar
Zhong QY, Fu XG, Zhang TT, Zhou T, Yue M, Liu JN, et al. Phylogeny and evolution of chloroplast tRNAs in Adoxaceae. Ecol Evol. 2020;11:1294–309.
Article
Google Scholar
Cho KS, Yun BK, Yoon YH, Hong SY, Mekapogu M, Kim KH, et al. Complete chloroplast genome sequence of tartary buckwheat (Fagopyrum tataricum) and comparative analysis with common buckwheat (F. esculentum). PLoS One. 2015;10:e0125332.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang CL, Ding MQ, Zou CY, Zhu XM, Tang Y, Zhou ML, et al. Comparative analysis of four buckwheat species based on morphology and complete chloroplast genome sequences. Sci Rep. 2017;7:6514.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhu A, Guo W, Gupta S, Fan W, Mower JP. Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates. New Phytol. 2016;209:1747–56.
Article
CAS
PubMed
Google Scholar
Weng ML, Ruhlman TA, Jansen RK. Expansion of inverted repeat does not decrease substitution rates in Pelargonium plastid genomes. New Phytol. 2017;214:842–51.
Article
CAS
PubMed
Google Scholar
Yao G, Jin JJ, Li HT, Yang JB, Mandala VS, Croley M, et al. Plastid phylogenomic insights into the evolution of Caryophyllales. Mol Phylogenet Evol. 2019;134:74–86.
Article
PubMed
Google Scholar
Yang BB, Li LD, Liu JQ, Zhang LH. Plastome and phylogenetic relationship of the woody buckwheat Fagopyrum tibeticum in the Qinghai-Tibet plateau. Plant Diversity. 2020;43:198–205.
Article
PubMed
PubMed Central
Google Scholar
Guo YY, Yang JX, Bai MZ, Zhang GQ, Liu ZJ. The chloroplast genome evolution of Venus slipper (Paphiopedilum): IR expansion, SSC contraction, and highly rearranged SSC regions. BMC Plant Biol. 2021;21:248.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li QJ, Su N, Tong RC, Zhang XH, Wang JR, Chang ZY, et al. Chloroplast genomes elucidate diversity, phylogeny, and taxonomy of Pulsatilla (Ranunculaceae). Sci Rep. 2020;10:19781.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gui L, Jiang S, Wang H, Nong D, Liu Y. Characterization of the complete chloroplast genome of sorrel (Rumex acetosa). Mitochondrial DNA B. 2018;3:904–6.
Google Scholar
Song F, Li T, Burgess KS, Feng Y, Ge XJ. Complete plastome sequencing resolves taxonomic relationships among species of Calligonum L. (Polygonaceae) in China. BMC Plant Biol. 2020;20:261.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou T, Zhu H, Wang J, Xu Y, Wang X. Complete chloroplast genome sequence determination of rheum species and comparative chloroplast genomics for the members of Rumiceae. Plant Cell Rep. 2020;39:811–24.
Article
CAS
PubMed
Google Scholar
Logacheva MD, Penin AA, Valiejo-Roman CM, Antonov AS. Structure and evolution of junctions between inverted repeat and small single copy regions of chloroplast genome in non-core caryophyllales. Mol Biol. 2009;43:757–65.
Article
CAS
Google Scholar
Simmonds SE, Smith JF, Davidson C, Davidson C, Buerki S. Phylogenetics and comparative plastome genomics of two of the largest genera of angiosperms, Piper and Peperomia (Piperaceae). Mol Phylogenet Evol. 2021;163: 107229.
Article
PubMed
Google Scholar
Wen J, Xie DF, Price M, Ren T, Deng YQ, Gui LJ, et al. Backbone phylogeny and evolution of Apioideae (Apiaceae): New insights from phylogenomic analyses of plastome data. Mol Phylogenet Evol. 2021;161:107183.
Article
PubMed
Google Scholar
Kawasaki M, Ohnishi O. Two distinct groups of natural populations of Fagopyrum urophyllum (Bur. et Franch.) Gross revealed by the nucleotide sequence of a noncoding region in chloroplast DNA. Genes Genet Syst. 2006;81:323–32.
Article
CAS
PubMed
Google Scholar
Ohsako T, Ohnishi O. Nucleotide sequence variation of the chloroplast trnK/matK region in two wild Fagopyrum (Polygonaceae) species, F. leptopodum and F. statice. Genes Genet Syst. 2001;76:39–46.
Article
CAS
PubMed
Google Scholar
Ma KH, Kim NS, Lee GA, Lee SY, Lee JK, Yi JY, et al. Development of SSR markers for studies of diversity in the genus Fagopyrum. Theor Appl Genet. 2009;119:1247–54.
Article
CAS
PubMed
Google Scholar
Mizuno N, Yasui Y. Gene flow signature in the S-allele region of cultivated buckwheat. BMC Plant Biol. 2019;19:125.
Article
PubMed
PubMed Central
Google Scholar
Logacheva MD, Samigullin TH, Dhingra A, Penin AA. Comparative chloroplast genomics and phylogenetics of Fagopyrum esculentum ssp. ancestrale – a wild ancestor of cultivated buckwheat. BMC Plant Biol. 2008;8:59.
Article
PubMed
PubMed Central
CAS
Google Scholar
Logacheva MD, Schelkunov MI, Fesenko AN, Kasianov AS, Penin AA. Mitochondrial genome of Fagopyrum esculentum and the genetic diversity of extranuclear genomes in buckwheat. Plants. 2020;9:618.
Article
CAS
PubMed Central
Google Scholar
Sanchez A, Schuster TM, Kron KA. A large-scale phylogeny of Polygonaceae based on molecular data. Int J Plant Sci. 2009;170:1044–55.
Article
CAS
Google Scholar
Sanchez A, Schuster TM, Burke JM, Kron KA. Taxonomy of Polygonoideae (Polygonaceae): a new tribal classification. Taxon. 2011;60:151–60.
Article
Google Scholar
Tsuji K, Yasui Y, Ohnishi O. Search for Fagopyrum species in eastern China. Fagopyrum. 1999;16:1–6.
Google Scholar
Chen QF. A study of resources of Fagopyrum (Polygonaceae) native to China. Bot J Linn Soc. 1999;130:53–64.
Article
Google Scholar
Cheng C, Fan Y, Tang Y, Zhang KX, Joshi DC, Jha R, et al. Fagopyrum esculentum ssp. ancestrale-a hybrid species between diploid F. cymosum and F. esculentum. Front Plant Sci. 2020;11:1073.
Article
PubMed
PubMed Central
Google Scholar
Doyle J, Doyle JL. Genomic plant DNA preparation from fresh tissue-CTAB method. Phytochem Bull. 1987;19:11.
Google Scholar
Jin JJ, Yu WB, Yang JB, Song Y, Depamphilis C, Yi TS, et al. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 2020;21:241.
Article
PubMed
PubMed Central
Google Scholar
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9.
Article
PubMed
PubMed Central
Google Scholar
Qu XJ, Moore MJ, Li DZ, Yi TS. PGA: a software package for rapid, accurate, and flexible batch annotation of plastomes. Plant Methods. 2019;15:50.
Article
PubMed
PubMed Central
Google Scholar
Tillich M, Lehwark P, Pellizzer T, Ulbricht-Jones ES, Fischer A, Bock R. GeSeq – versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 2017;45:W6–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lohse M, Drechsel O, Kahlau S, Bock R. OrganellarGenomeDRAW-a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res. 2013;41:575–81.
Article
Google Scholar
Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I. VISTA: computational tools for comparative genomics. Nucleic Acids Res. 2004;32:273–9.
Article
CAS
Google Scholar
Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R. REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 2001;29:4633–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451–2.
Article
CAS
PubMed
Google Scholar
Thiel T, Michalek W, Varshney R, Graner A. Exploiting EST databases for the development and characterization of genederived SSR- markers in barley (Hordeum vulgare L.). Theor Appl Genet. 2003;106:411–22.
Article
CAS
PubMed
Google Scholar
Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999;27:573–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stamakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
Article
CAS
Google Scholar
Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES science gateway forinference of large phylogenetic trees. In: Gateway Computing Environments Workshop; 2010. p. 1–8.
Swofford DL. PAUP*. In: Phylogenetic analysis using parsimony (* and other methods). Version 4. Sunderland: Sinauer Associates; 2003. p. b10.
Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–4.
Article
CAS
PubMed
Google Scholar