Katara JL, Verma RL, Parida M, Ngangkham U, Molla KA, Barbadikar KM, et al. Differential expression of genes at panicle initiation and grain filling stages implied in heterosis of rice hybrids. Int J Mol Sci. 2020;21:1080.
Article
CAS
PubMed Central
Google Scholar
Hossain M, Fischer KS. Rice research for food security and sustainable agricultural development in Asia: Achievements and future challenges. GeoJournal. 1995;35:286–98.
Article
Google Scholar
Ren J, Zhang F, Gao F, Zeng L, Lu X, Zhao X, et al. Transcriptome and genome sequencing elucidates the molecular basis for the high yield and good quality of the hybrid rice variety Chuanyou6203. Sci Rep. 2020;10:19935.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shull GH. The Composition of a Field of Maize. J Hered. 1908;4:296–301.
Article
Google Scholar
Crow JF. 90 years ago: the beginning of hybrid maize. Genetics. 1998;148:923–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Williams W. Heterosis and the genetics of complex characters. Nature. 1959;184:527–30.
Article
CAS
PubMed
Google Scholar
Jones DF. Dominance of linked factors as a means of accounting for heterosis. Proc Natl Acad Sci. 1917;3:310–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li L, Lu K, Chen Z, Mu T, Hu Z, Li X. Dominance, overdominance and epistasis condition the heterosis in two heterotic rice hybrids. Genetics. 2008;180:1725–42.
Article
PubMed
PubMed Central
Google Scholar
Birchler JA, Yao H, Chudalayandi S, Vaiman D, Veitia RA. Heterosis. Plant Cell. 2010;22:2105–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schnable PS, Springer NM. Progress toward understanding heterosis in crop plants. Annu Rev Plant Biol. 2013;64:71–88.
Article
CAS
PubMed
Google Scholar
Xiao J, Li J, Yuan L, Tanksley SD. Dominance is the major genetic basis of heterosis in rice as revealed by Qtl analysis using molecular markers. Genetics. 1995;140:745–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Z-K, Luo LJ, Mei HW, Wang DL, Shu QY, Tabien R, et al. Overdominant epistatic Loci are the primary genetic basis of inbreeding depression and heterosis in rice. I Biomass and Grain Yield Genetics. 2001;158:1737–53.
CAS
PubMed
Google Scholar
Groszmann M, Greaves IK, Albertyn ZI, Scofield GN, Peacock WJ, Dennis ES. Changes in 24-nt siRNA levels in Arabidopsis hybrids suggest an epigenetic contribution to hybrid vigor. Proc Natl Acad Sci. 2011;108:2617–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ni Z, Kim E-D, Ha M, Lackey E, Liu J, Zhang Y, et al. Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature. 2009;457:327–31.
Article
CAS
PubMed
Google Scholar
Song G-S, Zhai H-L, Peng Y-G, Zhang L, Wei G, Chen X-Y, et al. Comparative transcriptional profiling and preliminary study on heterosis mechanism of super-hybrid rice. Mol Plant. 2010;3:1012–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang X, Yang S, Gong J, Zhao Q, Feng Q, Zhan Q, et al. Genomic architecture of heterosis for yield traits in rice. Nature. 2016;537:629–33.
Article
CAS
PubMed
Google Scholar
Huang X, Yang S, Gong J, Zhao Y, Feng Q, Gong H, et al. Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nat Commun. 2015;6:1–9.
Google Scholar
Shen G, Hu W, Zhang B, Xing Y. The regulatory network mediated by circadian clock genes is related to heterosis in rice. J Integr Plant Biol. 2015;57:300–12.
Article
CAS
PubMed
Google Scholar
Chen L, Bian J, Shi S, Yu J, Khanzada H, Wassan GM, et al. Genetic analysis for the grain number heterosis of a super-hybrid rice WFYT025 combination using RNA-Seq. Rice. 2018;11:37.
Article
PubMed
PubMed Central
Google Scholar
Wei G, Tao Y, Liu G, Chen C, Luo R, Xia H, et al. A transcriptomic analysis of superhybrid rice LYP9 and its parents. Proc Natl Acad Sci. 2009;106:7695–701.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo M, Yang S, Rupe M, Hu B, Bickel DR, Arthur L, et al. Genome-wide allele-specific expression analysis using MASSIVELY Parallel Signature Sequencing (MPSS™) reveals cis- and trans-effects on gene expression in maize hybrid meristem tissue. Plant Mol Biol. 2008;66:551–63.
Article
CAS
PubMed
Google Scholar
Paschold A, Jia Y, Marcon C, Lund S, Larson NB, Yeh CT, et al. Complementation contributes to transcriptome complexity in maize (Zea mays L.) hybrids relative to their inbred parents. Genome Res. 2012;22:2445–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paschold A, Larson NB, Marcon C, Schnable JC, Yeh C-T, Lanz C, et al. Nonsyntenic genes drive highly dynamic complementation of gene expression in maize hybrids. Plant Cell. 2014;26:3939–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shao L, Xing F, Xu C, Zhang Q, Che J, Wang X, et al. Patterns of genome-wide allele-specific expression in hybrid rice and the implications on the genetic basis of heterosis. Proc Natl Acad Sci. 2019;116:5653–8 201820513.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruan J, Zhou Y, Zhou M, Yan J, Khurshid M, Weng W, et al. Jasmonic acid signaling pathway in plants. Int J Mol Sci. 2019;20:2479.
Article
CAS
PubMed Central
Google Scholar
Vranová E, Coman D, Gruissem W. Structure and dynamics of the isoprenoid pathway network. Mol Plant. 2012;5:318–33.
Article
PubMed
CAS
Google Scholar
Taj G, Agarwal P, Grant M, Kumar A. MAPK machinery in plants. Plant Signal Behav. 2010;5:1370–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheong Y-H, Kim M-C. Functions of MAPK cascade pathways in plant defense signaling. Plant Pathol J. 2010;26:101–9.
Article
CAS
Google Scholar
Yang A, Dai X, Zhang W-H. A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot. 2012;63:2541–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shen C, Que Z, Xia Y, Tang N, Li D, He R, et al. Knock out of the annexin gene OsAnn3 via CRISPR/Cas9-mediated genome editing decreased cold tolerance in rice. J Plant Biol. 2017;60:539–47.
Article
CAS
Google Scholar
Zhang Q, Song T, Guan C, Gao Y, Ma J, Gu X, et al. OsANN4 modulates ROS production and mediates Ca2+ influx in response to ABA. BMC Plant Biol. 2021;21:474.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yao W, Li G, Yu Y, Ouyang Y. funRiceGenes dataset for comprehensive understanding and application of rice functional genes. GigaScience. 2018;7:gix119.
Article
CAS
Google Scholar
Price MB, Jelesko J, Okumoto S. Glutamate receptor homologs in plants: functions and evolutionary origins. Front Plant Sci. 2012;3:235.
Article
PubMed
PubMed Central
Google Scholar
Fan J, Bai P, Ning Y, Wang J, Shi X, Xiong Y, et al. The monocot-specific receptor-like kinase SDS2 controls cell death and immunity in rice. Cell Host Microbe. 2018;23:498-510.e5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duan Y, Li S, Chen Z, Zheng L, Diao Z, Zhou Y, et al. Dwarf and deformed flower 1, encoding an F-box protein, is critical for vegetative and floral development in rice (Oryza sativa L.). Plant J Cell Mol Biol. 2012;72:829–42.
Article
CAS
Google Scholar
Ji Y, Huang W, Wu B, Fang Z, Wang X. The amino acid transporter AAP1 mediates growth and grain yield by regulating neutral amino acid uptake and reallocation in Oryza sativa. J Exp Bot. 2020;71:4763–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zou J, Liu C, Liu A, Zou D, Chen X. Overexpression of OsHsp17.0 and OsHsp23.7 enhances drought and salt tolerance in rice. J Plant Physiol. 2012;169:628–35.
Article
CAS
PubMed
Google Scholar
Li D, Huang Z, Song S, Xin Y, Mao D, Lv Q, et al. Integrated analysis of phenome, genome, and transcriptome of hybrid rice uncovered multiple heterosis-related loci for yield increase. Proc Natl Acad Sci. 2016;113:E6026–35.
CAS
PubMed
PubMed Central
Google Scholar
Zhai R, Feng Y, Wang H, Zhan X, Shen X, Wu W, et al. Transcriptome analysis of rice root heterosis by RNA-Seq. BMC Genomics. 2013;14:19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu Y, Wang Y, Mi X-F, Shan J-X, Li X-M, Xu J-L, et al. The QTL GNP1 encodes GA20ox1, which increases grain number and yield by increasing Cytokinin activity in rice panicle meristems. PLOS Genet. 2016;12:e1006386.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wu K, Wang S, Song W, Zhang J, Wang Y, Liu Q, et al. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice. Science. 2020;367:2046.
Article
CAS
Google Scholar
Hu B, Wang W, Ou S, Tang J, Li H, Che R, et al. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat Genet. 2015;47:834–8.
Article
CAS
PubMed
Google Scholar
Wang F, Peng S. Yield potential and nitrogen use efficiency of China’s super rice. J Integr Agric. 2017;16:1000–8.
Article
CAS
Google Scholar
Xu L, Yuan S, Wang X, Yu X, Peng S. High yields of hybrid rice do not require more nitrogen fertilizer than inbred rice: A meta-analysis. Food Energy Secur. 2021;10:341–50.
Article
Google Scholar
Chodavarapu RK, Feng S, Ding B, Simon SA, Lopez D, Jia Y, et al. Transcriptome and methylome interactions in rice hybrids. Proc Natl Acad Sci. 2012;109:12040–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei X, Qiu J, Yong K, Fan J, Zhang Q, Hua H, et al. A quantitative genomics map of rice provides genetic insights and guides breeding. Nat Genet. 2021;53:243–53.
Article
CAS
PubMed
Google Scholar
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33:290–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frazee AC, Pertea G, Jaffe AE, Langmead B, Salzberg SL, Leek JT. Ballgown bridges the gap between transcriptome assembly and expression analysis. Nat Biotechnol. 2015;33:243–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. 2013;1303:3997v1.
Google Scholar
Picard Tools - By Broad Institute. http://broadinstitute.github.io/picard/. Accessed 20 Mar 2019.
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 2012;6:80–92.
Article
CAS
Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.
Article
CAS
PubMed
Google Scholar
Castel SE, Mohammadi P, Chung WK, Shen Y, Lappalainen T. Rare variant phasing and haplotypic expression from RNA sequencing with phASER. Nat Commun. 2016;7:1–6.
Article
Google Scholar
Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R Package for Comparing Biological Themes Among Gene Clusters. OMICS J Integr Biol. 2012;16:284–7.
Article
CAS
Google Scholar
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.
Article
CAS
PubMed
PubMed Central
Google Scholar