Rizwan M, Ali S, Qayyum MF, Ok YS, Adrees M, Ibrahim M, Zia-Ur-Rehman M, Farid M, Abbas F. Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review. J Hazard Mater. 2017;322:2–16.
Article
CAS
PubMed
Google Scholar
Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S. Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep. 2017;15:11–23.
Article
Google Scholar
Abdelmalek GMA, Salaheldin TA. Silver nanoparticles as a potent fungicide for citrus phytopathogenic fungi. J Nanomed Res. 2016;3:1–8.
Google Scholar
Mishra S, Singh BR, Singh A, Keswani C, Naqvi AH, Singh HB. Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS One. 2014;9:1–11.
Article
Google Scholar
Prasad R, Bhattacharrya A, Nguyen QD. Nanotechnology in Sustainable Agriculture: Recent Developments, Challenges, and Perspectives. Front Microbiol. 2017;8:1–13.
Article
Google Scholar
Gudikandula K, Maringanti SC. Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties. J Exp Nanosci. 2016;11:714–21.
Article
CAS
Google Scholar
Guilger-Casagrande M, Lima R. Synthesis of Silver nanoparticles mediated by Fungi: a Review. Front Bioeng Biotechnol. 2019;7:1–16.
Article
Google Scholar
Rheder DT, Guilger M, Bilesky-Jose N, Germano-Costa T, Pasquoto-Stigliani T, Gallep TBB, Grillo R, Carvalho CDS, Fraceto LF, Lima R. Synthesis of biogenic silver nanoparticles using Althaea officinalis as reducing agent: evaluation of toxicity and ecotoxicity. Sci Rep. 2018;8:1–11.
Article
CAS
Google Scholar
Ballotin D, Fulaz S, Souza ML, Corio P, Rodrigues AG, Souza AO, Gaspari PM, Gomes AF, Gozzo F, Tasic L. Elucidating protein involvement in the stabilization of the biogenic silver nanoparticles. Nanoscale Res Lett. 2016;11:1–9.
Article
CAS
Google Scholar
Satti SH, Raja NI, Javed B, Akram A, Mashwani ZuR, Ahmad MS, Ikram M. Titanium dioxide nanoparticles elicited agro-morphological and physicochemical modifications in wheat plants to control Bipolaris sorokiniana. PLoS One. 2021;16:e0246880.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jasim B, Thomas R, Mathew J, Radhakrishnan EK. Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenumgraecum L.). Saudi Pharm J. 2017;25:443–7.
Article
CAS
PubMed
Google Scholar
Shende S, Rathod D, Gade A, Rai M. Biogenic copper nanoparticles promote the growth of pigeon pea (Cajanus cajan L.). IET Nanobiotechnol. 2017;11:773–81.
Article
PubMed Central
Google Scholar
Rastogi A, Zivcak M, Sytar O, Kalaji HM, He X, Mbarki S, Brestic M. Impact of metal and metal oxide nanoparticles on plant: a critical review. Front Chem. 2017;5:1–16.
Article
CAS
Google Scholar
Lima R, Seabra AB, Durán N. Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. J Appl Toxicol. 2012;32:867–79.
Article
CAS
PubMed
Google Scholar
Rana A, Yadav K, Jagadevan S. A comprehensive review on green synthesis of nature-inspired metal nanoparticles: mechanism, application and toxicity. J Clean Prod. 2020;272:122880.
Article
CAS
Google Scholar
Yan A, Chen Z. Impacts of silver nanoparticles on plants: a focus on the phytotoxicity and underlying mechanism. Int J Mol Sci. 2019;20:1–21.
Article
Google Scholar
Sanzari I, Leone A, Ambrosone A. Nanotechnology in plant science: to make a long story short. Front Bioeng Biotechnol. 2019;7:1–12.
Article
Google Scholar
Kataria S, Jain M. Role of nanoparticles on photosynthesis: avenues and applications. In: Tripathi DK, Ahmad P, Sharma S, Chauhan DK, editors. Nanomaterials in Plants, Algae and Microorganisms: Concepts and Controversies. India: Elsevier; 2018. p. 103–27 2.
Google Scholar
Anwar N, Mehmood A, Ahmad KS, Hussain K. Biosynthesized silver nanoparticles induce phytotoxicity in Vigna radiata L. Physiol Mol Biol Plants. 2021;27:2115–26.
Article
CAS
PubMed
Google Scholar
Verma DK, Patel S, Kushwah KS. Green biosynthesis of silver nanoparticles and impact on growth, chlorophyll, yield and phytotoxicity of Phaseolus vulgaris L. Vegetos. 2020;33:648–57.
Article
Google Scholar
Noshad A, Hetherington C, Iqbal M. Impact of AgNPs on seed germination and seedling growth: a focus study on its antibacterial potential against clavibacter michiganensis subsp michiganensis infection in solanum lycopersicum. J Nanomater. 2019;2019:1–12.
Article
CAS
Google Scholar
Kannaujia R, Srivastava CM, Prasad V, Singh BN, Pandey V. Phyllanthus emblica fruit extract stabilized biogenic silver nanoparticles as a growth promoter of wheat varieties by reducing ROS toxicity. Plant Physiol Biochem. 2019;142:460–71.
Article
CAS
PubMed
Google Scholar
Tovar GI, Bricenõ S, Suarez J, Flores S, González G. Biogenic synthesis of iron oxide nanoparticles using Moringa oleifera and chitosan and its evaluation on corn germination. Environ Nanotechnol Monit Manag. 2020;14:100350.
Google Scholar
Win TT, Khan S, Bo B, Zada S, Fu PC. Green synthesis and characterization of Fe3O4 nanoparticles using Chlorella-K01 extract for potential enhancement of plant growth stimulating and antifungal activity. Sci Rep. 2021;11:21996.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar VK, Muthukrishnan S, Rajalakshmi R. Phytostimulatory effect of phytochemical fabricated nanosilver (AgNPs) on Psophocarpus tetragonolobus (L.) DC. seed germination: an insight from antioxidative enzyme activities and genetic similarity studies. Curr Plant Biol. 2020;23:100158.
Article
Google Scholar
Guilger-Casagrande M, Germano-Costa T, Pasquoto-Stigliani T, Fraceto LF, Lima R. Biosynthesis of silver nanoparticles employing Trichoderma harzianum with enzymatic stimulation for the control of Sclerotinia sclerotiorum. Sci Rep. 2019;9:14351.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bilesky-José N, Maruyama C, Germano-Costa T, Campos E, Carvalho L, Grillo R, Fraceto LF, Lima R. Biogenic α-Fe2O3 nanoparticles enhance the biological activity of trichoderma against the plant pathogen Sclerotinia sclerotiorum. ACS Sustain Chem Eng. 2021;9:1669–83.
Article
CAS
Google Scholar
Sibaldelli RNR, Gonçalves SL, Farias JRB. Boletim Agrometeorológico da Embrapa Soja, Londrina, PR - 2019, Documentos 427. Londrina: Embrapa Soja; 2020. p. 1–28.
Google Scholar
Hoagland DR, Arnon DI. The Water Culture Method for Growing Plants Without Soil. Berkeley: California Agricultural Experiment Station, Circular 34; 1950. p. 1–32.
Google Scholar
Wellburn AR. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol. 1994;144:307–13.
Article
CAS
Google Scholar
Alexieva V, Sergiev I, Mapelli S, Karanov E. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell Environ. 2011;24:1337–44.
Article
Google Scholar
Camejo G, Wallin B, Enojärvi M. Analyses of oxidation and antioxidants using microtiter plates. In: Amstrong D, editor. Free Radical and Antioxidants Protocols. Molndal: Humana Press; 1998. p. 377–87.
Chapter
Google Scholar
Boveris A, Cadenas E, Chance B. Low-level chemi-luminescence of the lipoxygenase reaction. Photobiochem Photobiophys. 1980;1:175–82.
CAS
Google Scholar
Bitencourt GA, Chiari L, Valle CB, Laura VA, Moro JR. Avaliação de diferentes métodos para extração de RNA total de folhas e raízes de braquiária. Embrapa - Boletim de Pesquisa e Desenvolvimento. 2011;29:1–23.
Google Scholar
Nair PMG, Chung IM. A mechanistic study on the toxic effect of copper oxide nanoparticles in soybean (Glycine max L) root development and lignification of root cells. Biol Trace Element Res. 2014;162:342–52.
Article
CAS
Google Scholar
Passardi F, Cosio C, Penel C, Dunand C. Peroxidases have more functions than a Swiss army knife. Plant Cell Rep. 2005;24:255–65.
Article
CAS
PubMed
Google Scholar
Kaveh R, Li YS, Ranjbar S, Tehrani R, Brueck CL, Van Aken B. Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ Sci Technol. 2013;47:10637–44.
Article
CAS
PubMed
Google Scholar
De La Torre-Roche R, Hawthorne J, Musante C, Xing B, Newman LA, Ma X, White JC. Impact of Ag nanoparticle exposure on p, p′-DDE bioaccumulation by Cucurbita pepo (Zucchini) and Glycine max (Soybean). J Environ Sci Technol. 2013;47:718–25.
Article
CAS
Google Scholar
Zou X, Li P, Huang Q, Zhang H. The different response mechanisms of wolffia globosa: light-induced silver nanoparticle toxicity. Aquat Toxicol. 2016;176:97–105.
Article
CAS
PubMed
Google Scholar
Chavarria G, Santos HP. Plant Water Relations: Absorption, Transport and Control Mechanisms. In: Montaro G, Dichio B, editors. Advances in Selected Plant Physiology Aspects. InTechOpen; 2012. p. 105–32.
Tripathi DK, Tripathi A, Shweta Singh S, Singh Y, Vishwakarma K, Yadav G, Sharma S, Singh VK, Mishra RK, Upadhyay RG, Dubey NK, Lee Y, Chauhan DK. Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: a concentric review. Front Microbiol. 2017;8:1–16.
Article
CAS
Google Scholar
Vishwakarma K, Schweta Upadhyay N, Singh J, Liu S, Singh VP, Prasad SM, Chauhan DK, Tripathi DK, Sharma S. Differential phytotoxic impact of plant mediated silver nanoparticles (AgNPs) and silver nitrate (AgNO3) on Brassica sp. Front Plant Sci. 2017;8:1–12.
Article
PubMed
PubMed Central
Google Scholar
Thiruvengadam M, Gurunathan S, Chung I-M. Physiological, metabolic, and transcriptional effects of biologically-synthesized silver nanoparticles in turnip (Brassica rapa ssp rapa L.). Protoplasma. 2015;252:1031–46.
Article
CAS
PubMed
Google Scholar
Al-Huqail AA, Hatata MM, Al-Huqail AA, Ibrahim MM. Preparation, characterization of silver phyto nanoparticles and their impact on growth potential of Lupinus termis L. seedlings. Saudi J Biol Sci. 2018;25:313–9.
Article
CAS
PubMed
Google Scholar
Soliman M, Qari SH, Abu-Elsaoud A, El-Esawi M, Alhaithloul H, Elkelish A. Rapid green synthesis of silver nanoparticles from blue gum augment growth and performance of maize, fenugreek, and onion by modulating plants cellular antioxidant machinery and genes expression. Acta Physiol Plant. 2020;42:1–16.
Article
CAS
Google Scholar
Panda KK, Achary VMM, Krishnaveni R, Padhi BK, Sarangi SN, Sahu SN, Panda BB. In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants. Toxicol in vitro. 2011;25:1097–105.
Article
CAS
PubMed
Google Scholar
Loix C, Huybrechts M, Vangronsveld J, Gielen M, Keunen E, Cuypers A. Reciprocal interactions between cadmium-induced cell wall responses and oxidative stress in plants. Front Plant Sci. 2017;8:1–19.
Article
Google Scholar
Gechev TS, Breusegem FV, Stone JM, Denev I, Laloi C. Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays. 2006;28:1091–101.
Article
CAS
PubMed
Google Scholar
Cunha-Lopes TL, Siqueira-Soares RC, Almeida GHG, Melo GSR, Barreto GE, Oliveira DM, Santos WD, Ferrarese-Filho O, Marchiosi R. Lignin-induced growth inhibition in soybean exposed to iron oxide nanoparticles. Chemosphere. 2018;211:226–34.
Article
CAS
PubMed
Google Scholar
Rui M, Ma C, Hao Y, Guo J, Rui Y, Tang X, Zhao Q, Fan X, Zhang Z, Hou T, Zhu S. Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front Plant Sci. 2016;7:1–10.
Article
Google Scholar
Rajiv P, Bavadharani B, Kumar MN, Vanathi P. Synthesis and characterization of biogenic iron oxide nanoparticles using green chemistry approach and evaluating their biological activities. Biocatal Agric Biotechnol. 2017;12:45–9.
Article
Google Scholar
Abusalem M, Awwad A, Ayad J, Rayy AA. Green synthesis of α-Fe2O3 nanoparticles using pistachio leaf extract influenced seed germination and seedling growth of tomatos. JJEES. 2019;10:161–6.
Google Scholar
Irum S, Jabeen N, Ahmad KS, Shafique Khan TF, Gul H, Anwaar S, Shah NI, Mehmood A, Hussain SZ. Biogenic iron oxide nanoparticles enhance callogenesis and regeneration pattern of recalcitrant Cicer arietinum L. PLoS One. 2020;15:e0242829.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iannone MF, Groppa MD, Zawoznik MS, Coral DF, Van Raap MBF, Benavides MP. Magnetite nanoparticles coated with citric acid are not phytotoxic and stimulate soybean and alfalfa growth. Ecotoxicol Environ Saf. 2021;211:111942.
Article
CAS
PubMed
Google Scholar
Sreelakshmi B, Induja S, Adarsh PP, Rahul HL, Arya SM, Aswana S, Haripriya R, Aswathy BR, Manoj PK, Vishnudasan D. Drought stress amelioration in plants using green synthesised iron oxide nanoparticles. Mater Today. 2021;41:723–7.
CAS
Google Scholar
Guilger-Casagrande M, Germano-Costa T, Bilesky-José N, Pasquoto-Stigliani T, Carvalho L, Fraceto LF, Lima R. Influence of the capping of biogenic silver nanoparticles on their toxicity and mechanism of action towards Sclerotinia sclerotiorum. J Nanobiotechnol. 2021;19:1–18.
Article
CAS
Google Scholar