Wu J, Wang L, Fu J, Chen J, Wei S, Zhang S, et al. Resequencing of 683 common bean genotypes identifies yield component trait associations across a north–south cline. Nat Genet. 2020;52(1):118–25.
Article
CAS
PubMed
Google Scholar
Wu L, Chang Y, Wang L, Wu J, Wang S. Genetic dissection of drought resistance based on root traits at the bud stage in common bean. Theor Appl Genet. 2021;134(4):1047–61.
Article
CAS
PubMed
Google Scholar
Bitocchi E, Rau D, Bellucci E, Rodriguez M, Murgia ML, Gioia T, et al. Beans (Phaseolus ssp.) as a model for understanding crop evolution. Front Plant Sci. 2017;8:722.
Article
PubMed
PubMed Central
Google Scholar
Myers JR, Kmiecik K. Common bean: economic importance and relevance to biological science research. In: Pérez de la Vega M, Santalla M, Marsolais F, editors. The common bean genome. Cham: Springer International Publishing; 2017. p. 1–20.
Google Scholar
Broughton WJ, Hernández G, Blair M, Beebe S, Gepts P, Vanderleyden J. Beans (Phaseolus spp.) – model food legumes. Plant and Soil. 2003;252:55–128.
Article
CAS
Google Scholar
Parreira JR, Bouraada J, Fitzpatrick MA, Silvestre S, de Silva AB, da Silva JM, et al. Differential proteomics reveals the hallmarks of seed development in common bean (Phaseolus vulgaris L.). J Proteomics. 2016;143:188–98.
Article
CAS
PubMed
Google Scholar
Mensack MM, Fitzgerald VK, Ryan EP, Lewis MR, Thompson HJ, Brick MA. Evaluation of diversity among common beans (Phaseolus vulgaris L.) from two centers of domestication using 'omics' technologies. BMC Genomics. 2010;11:686.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X, Blair MW, Wang S. Genetic diversity of Chinese common bean (Phaseolus vulgaris L.) landraces assessed with simple sequence repeat markers. Theor Appl Genet. 2008;117:629–40.
Article
CAS
PubMed
Google Scholar
Toledo MEO, de Mejia EG, Sivaguru M, Amaya-Llano SL. Common bean (Phaseolus vulgaris L.) protein-derived peptides increased insulin secretion, inhibited lipid accumulation, increased glucose uptake and reduced the phosphatase and tensin homologue activation in vitro. J Funct Foods. 2016;27:160–77.
Article
CAS
Google Scholar
Naroz MH, Ahmed SS, Abdel-Aziz SY, Abdel-Shafy S. First record of Acanthoscelides obtectus (say) (Coleoptera: Chrysomelidae: Bruchinae) in Egypt: development and host preference on five species of legume seeds. Coleopt Bull. 2019;73(3):727–34.
Article
Google Scholar
Mallqui KSV, Oliveira EE, Guedes RNC. Competition between the bean weevils Acanthoscelides obtectus and Zabrotes subfasciatus in common beans. J Stored Prod Res. 2013;55:32–5.
Article
Google Scholar
Alvarez N, McKey D, Hossaert-Mckey M, Born C, Mercier L, Benrey B. Ancient and recent evolutionary history of the bruchid beetle, Acanthoscelides obtectus say, a cosmopolitan pest of beans. Mol Ecol. 2005;14(4):1015–24.
Article
CAS
PubMed
Google Scholar
González-Vélez A, Ferwerda F, Abreu E, Beaver JS. Development of bean lines (Phaseolus vulgaris L.) resistant to BGYMV, BCMNV and bean weevil (Acanthoselides obtectus say). Annu Rep Bean Improv Coop. 2012;55:89–90.
Google Scholar
Simmonds MSJ, Blaney WM, Birch ANE. Legume seeds: the defences of wild and cultivated species of Phaseolus against attack by bruchid beetles. Ann Bot. 1989;63:177–84.
Article
Google Scholar
Duan C, Zhu Z, Li W, Bao S, Wang X. Genetic diversity and differentiation of Acanthoscelides obtectus say (Coleoptera: Bruchidae) populations in China. Agric For Entomol. 2017;19:113–21.
Article
Google Scholar
Mutungi C, Affognon HD, Njoroge AW, Manono J, Baributsa D, Murdock LL. Triple-layer plastic bags protect dry common beans (Phaseolus vulgaris) against damage by Acanthoscelides obtectus (Coleoptera: Chrysomelidae) during storage. J Econ Entomol. 2015;108(5):2479–88.
Article
CAS
PubMed
Google Scholar
Oliveira MRC, Corrêa AS, de Souza GA, Guedes RNC, de Oliveira LO. Mesoamerican origin and pre- and post-columbian expansions of the ranges of Acanthoscelides obtectus say, a cosmopolitan insect pest of the common bean. PLoS One. 2013;8(7):e70039.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson JA, Valero KA. Control of cowpea weevil, Callosobruchius maculatus, using freezing temperatures. Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reduction. 2000;90:1–4.
CAS
Google Scholar
Ferizli AG, Emekci M, Tutuncu S, Navarro S. Utilization of freezing temperatures to control Callosobruchus maculatus fab. (Coleoptera, Bruchidae). Integrated Protection of Stored Products. 2004;27(9):213–7.
Google Scholar
Manickam L, Jayas DS, Fields PG, White NDG. Low and high temperatures for the control of cowpea beetle, Callosobruchus maculatus (F.) (coleoptera: Bruchidae) in chickpeas. J Stored Prod Res. 2011;47:244–8.
Article
Google Scholar
Agrafioti P, Athanassiou GG, Nayak MK. Detection of phosphine resistance in major stored-product insects in Greece and evaluation of a field resistance test kit. J Stored Prod Res. 2019;82:40–7.
Article
Google Scholar
Ren Y, Mahon D. Fumigation trials on the application of ethyl formate to wheat, split faba beans and sorghum in small metal bins. J Stored Prod Res. 2006;42:277–89.
Article
CAS
Google Scholar
Mushobozy DMK, Nganilevanu G, Ruheza S, Swella GB. Plant oils as common bean (Phaseolus vulgaris L.) seed protectants against infestations by the Mexican bean weevil Zabrotes subfasciatus (Boh.). J Stored Prod Res. 2009;49(1):35–40.
Google Scholar
Negrisoli CRCB, Júnior ASN, Bernardi D, Garcia MS. Activity of eight strains of entomopathogenic nematodes (Rhabditida: Steinernematidae, Heterorhabditidae) against five stored product pests. Exp Parasitol. 2013;143:384–8.
Article
Google Scholar
Schmale I, Wackers FL, Cardona C, Dorn S. Biological control of the bean weevil, Acanthoscelides obtectus (say) (Col.: Bruchidae), by the native parasitoid Dinarmus basalis (Rondani) (Hym.: Pteromalidae) on small-scale farms in Colombia. J Stored Prod Res. 2006;42:31–41.
Article
Google Scholar
Ballhorn DJ, Kautz S, Heil M. Distance and sex determine host plant choice by herbivorous beetles. PLoS One. 2013;8(2):e55602.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ishimoto M, Sato T, Chrispeels MJ, Kitamura K. Bruchid resistance of transgenic azuki bean expressing seed α-amylase inhibitor of common bean. Entomol Exp Appl. 1996;79:309–15.
Article
CAS
Google Scholar
Lioi L, Galasso I, Lanave C, Daminati MG, Bollini R, Sparvoli F. Evolutionary analysis of the APA genes in the Phaseolus genus: wild and cultivated bean species as sources of lectin-related resistance factors? Theor Appl Genet. 2007;115:959–70.
Article
CAS
PubMed
Google Scholar
Kami J, Poncet V, Geffroy V, Gepts P. Development of four phylogenetically-arrayed BAC libraries and sequence of the APA locus in Phaseolus vulgaris. Theor Appl Genet. 2006;112(6):987–98.
Article
CAS
PubMed
Google Scholar
Mbogo KP, Davis J, Myers JR. Transfer of the arcelin-phytohaemagglutinin-α amylase inhibitor seed protein locus from tepary bean (Phaseolus acutifolius a. gray) to common bean (P. vulgaris L.). Biotechnology. 2009;8(3):285–95.
Article
CAS
Google Scholar
Paes NS, Gerhardt IR, Coutinho MV, Yokoyama M, Santana E, Harris N, et al. The effect of arcelin-1 on the structure of the midgut of bruchid larvae and immunolocalization of the arcelin protein. J Insect Physiol. 2000;46:393–402.
Article
CAS
PubMed
Google Scholar
Santino A, Valsasina B, Lioi L, Vitale A, Bollini R. Bean (Phaseolus vulgaris L.) seed lectins: a novel electrophoretic variant of arcelin. Plant Physiol. 1991;10:7–11.
Google Scholar
Velten G, Rott AS, Cardona C, Dorn S. The inhibitory effect of the natural seed storage protein arcelin on the development of Acanthoscelides obtectus. J Stored Prod Res. 2007;43:550–7.
Article
CAS
Google Scholar
Lioi L, Sparvoli F, Galasso I, Lanave C, Bollini R. Lectin-related resistance factors against bruchids evolved through a number of duplication events. Theor Appl Genet. 2003;107:814–22.
Article
CAS
PubMed
Google Scholar
Osborn TC, Alexander DC, Sun SSM, Cardona C, Bliss FA. Insecticidal activity and lectin homology of Arcelin seed protein. Science. 1988;240:207–10.
Article
CAS
Google Scholar
Andreas JR, Yandell BS, Bliss FA. Bean arcelin 1. Inheritance of a novel seed protein of Phaseolus vulgaris L. and its effect on seed composition. Theor Appl Genet. 1986;72(1):123–8.
Article
CAS
Google Scholar
Goossens A, Quintero C, Dillen W, Rycke RD, Valor JF, Clercq JD, et al. Analysis of bruchid resistance in the wild common bean accession G02771: no evidence for insecticidal activity of arcelin 5. J Exp Bot. 2000;51(348):1229–36.
Article
CAS
PubMed
Google Scholar
Blair MW, Prieto S, Díaz LM, Buendía HF, Cardona C. Linkage disequilibrium at the APA insecticidal seed protein locus of common bean (Phaseolus vulgaris L.). BMC Plant Biol. 2010;10:79.
Article
PubMed
PubMed Central
CAS
Google Scholar
Acosta-Gallegos JA, Quintero C, Vargas J, Toro O, Tohme J, Cardona C. A new variant of arcelin in wild common bean, Phaseolus vulgaris L., from southern Mexico. Genet Resour Crop Evol. 1998;45:235–42.
Article
Google Scholar
Zaugg I, Magni C, Panzeri D, Daminati MG, Bollini R, Benrey B, et al. QUES, a new Phaseolus vulgaris genotype resistant to common bean weevils, contains the Arcelin-8 allele coding for new lectin-related variants. Theor Appl Genet. 2013;126:647–61.
Article
CAS
PubMed
Google Scholar
Baldin ELL, Lara FM, Camargo RS, Pannuti LER. Characterization of resistance to the bean weevil Acanthoscelides obtectus say, 1831 (Coleoptera: Bruchidae) in common bean genotypes. Arthropod Plant Interact. 2017;11:861–70.
Article
Google Scholar
Apostolova E, Palagacheva N, Svetleva D, Mateeva A. Investigations on the resistance of some Bulgarian common bean genotypes towards bean weevil (Acanthoscelides obtectus say). J Cent Eur Agric. 2013;14:1530–40.
Article
Google Scholar
Azizoglu U. Biochemical properties of Turkish common beans and their resistance against bean weevil Acanthoscelides obtectus (Coleoptera: Bruchidae). Arthropod Plant Interact. 2018;12:283–90.
Article
Google Scholar
Blair MW, Muñoz C, Buendía HF, Flower J, Bueno JM, Cardona C. Genetic mapping of microsatellite markers around the arcelin bruchid resistance locus in common bean. Theor Appl Genet. 2010;121:393–402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kamfwa K, Beaver JS, Cichy KA, Kelly JD. QTL mapping of resistance to bean weevil in common bean. Crop Sci. 2018;58:1–9.
Article
CAS
Google Scholar
Duarte MAG, Cabral GB, Ibrahim AB, Aragão FJL. An overview of the APA locus and arcelin proteins and their biotechnological potential in the control of bruchids. Agri Gene. 2018;8:57–62.
Article
Google Scholar
Joshi J, Pandurangan S, Diapari M, Marsolais F. Comparison of gene families: seed storage and other seed proteins. In: Pérez dela Vega M, Santalla M, Marsolais F, editors. The common bean genome. Cham: Springer International Publishing; 2017. p. 201–17.
Chapter
Google Scholar
DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43(5):491–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, et al. High-throughput genotyping by whole-genome resequencing. Genome Res. 2009;19:1068–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmutz J, McClean PE, Mamidi S, Wu GA, Cannon SB, Grimwood J, et al. A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet. 2014;46(7):707–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Ooijen JW. JoinMap® 4.0: software for the calculation of genetic linkage maps in experimental population. Wageningen: Kyazma BV; 2006.
Google Scholar
Baier A, Webster BD. Control of Acanthoscelides obtectus say (Coleoptera: Bruchidae) in Phaseolus vulgaris L. seed stored on small farms—I. evaluation of damage. J Stored Prod Res. 1992;28:289–93.
Article
CAS
Google Scholar
Zheng X, Kuang Y, Zhang X, Lu C, Cao D, Li C, et al. A genetic linkage map and comparative genome analysis of common carp (Cyprinus carpio L.) using microsatellites and SNPs. Mol Genet Genomics. 2011;286:261–77.
Article
CAS
PubMed
Google Scholar
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reuter JA, Spacek DV, Snyder MP. High-throughput sequencing technologies. Mol Cell. 2015;58(4):586–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhao Q, Huang X, Lin Z, Han B. SEG-map: a novel software for genotype calling and genetic map construction from next-generation sequencing. Rice. 2010;3:98–102.
Article
Google Scholar
Zhou Q, Miao H, Li S, Zhang S, Wang Y, Weng Y, et al. A sequencing-based linkage map of cucumber. Mol Plant. 2015;8:961–3.
Article
PubMed
CAS
Google Scholar
Blair MW, Pedraza F, Buendia HF, Gaitán-Solís E, Beebe SE, Gepts P, et al. Development of a genome-wide anchored microsatellite map for common bean (Phaseolus vulgaris L.). Theor Appl Genet. 2003;107:1362–74.
Article
CAS
PubMed
Google Scholar
Blair MW, Cortés AJ, Farmer AD, Huang W, Ambachew D, Penmetsa RV, et al. Uneven recombination rate and linkage disequilibrium across a reference SNP map for common bean (Phaseolus vulgaris L.). PLoS One. 2018;13(3):e0189597.
Article
PubMed
PubMed Central
CAS
Google Scholar
Galeano CH, Cortés AJ, Fernández AC, Soler Á, Franco-Herrera N, Makunde G, et al. Gene-based single nucleotide polymorphism markers for genetic and association mapping in common bean. BMC Genet. 2012;13(1):48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu C, Fan B, Cao Z, Su Q, Wang Y, Zhang Z, et al. Development of a high-density genetic linkage map and identification of flowering time QTLs in adzuki bean (Vigna angularis). Sci Rep. 2016;6:39523.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hartweck LM, Vogelzang RD, Osborn TC. Characterization and comparison of arcelin seed protein variants from common bean. Plant Physiol. 1991;97:204–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
John ME, Long MC. Sequence analysis of arcelin 2, a lectin-like plant protein. Gene. 1990;86:171–6.
Article
CAS
PubMed
Google Scholar
Goossens A, Geremia R, Bauw G, van Montagu M, Angenon G. Isolation and characterization of arcelin-5 proteins and cDNAs. Eur J Biochem. 1994;225:787–95.
Article
CAS
PubMed
Google Scholar
Sparvoli F, Bollini R. Arcelin in wild bean (Phaseolus vulgaris L.) seeds: sequence of arcelin 6 shows it is a member of the arcelins 1 and 2 subfamily. Genet Resour Crop Evol. 1998;45:383–8.
Article
Google Scholar
Letunic I, Khedkar S, Bork P. SMART: recent updates, new developments and status in 2020. Nucleic Acids Res. 2021;49(D1):D458–60.
Article
CAS
PubMed
Google Scholar
Saxena L, Iyer BK, Ananthanarayan L. Purification of a bifunctional amylase/protease inhibitor from ragi (Eleusine coracana) by chromatography and its use as an affinity ligand. J Chromatogr B Biomed Appl. 2010;878:1549–54.
Article
CAS
Google Scholar
Shivaraj B, Pattabiraman TN. Natural plant enzyme inhibitors. Characterization of an unusual α-amylase/trypsin inhibitor from ragi (Eleusine coracana Geartn.). Biochem J. 1981;193:29–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Strobl S, Mühlhahn P, Bernstein R, Wiltscheck R, Maskos K, Wunderlich M, et al. Determination of the three-dimensional structure of the bifunctional alpha-amylase/trypsin inhibitor from ragi seeds by NMR spectroscopy. Biochemistry. 1995;34:8281–93.
Article
CAS
PubMed
Google Scholar
Boyd DW, Cohen AC, Alverson DR. Digestive enzymes and stylet morphology of Deraeocoris nebulosus (Hemiptera: Miridae), a predacious plant bug. Ann Entomol Soc Am. 2002;95(3):395–401.
Article
CAS
Google Scholar
Terra WR, Ferreira C. Insect digestive enzymes: properties, compartmentalization and function. Comp Biochem Physiol. 1994;109B:1–62.
CAS
Google Scholar
Oliva MLV, Silva MCC, Sallai RC, Brito MV, Sampaio MU. A novel subclassification for Kunitz proteinase inhibitors from leguminous seeds. Biochimie. 2010;92:1667–73.
Article
CAS
PubMed
Google Scholar
Sivakumar S, Mohan M, Thayumanavan B. Characterization of insect proteinases and their inhibition by finger and little millet inhibitors. J Plant Biochem Biotechnol. 2005;14:167–71.
Article
CAS
Google Scholar
Sivakumar S, Mohan M, Franco OL, Thayumanavan B. Inhibition of insect pest α-amylases by little and finger millet inhibitors. Pestic Biochem Physiol. 2006;85(3):155–60.
Article
CAS
Google Scholar
Lüthi C, Alvarez-Alfageme F, Ehlers JD, Higgins TJV, Romeis J. Resistance of αAI-1 transgenic chickpea (Cicer arietinum) and cowpea (Vigna unguiculata) dry grains to bruchid beetles (Coleoptera: Chrysomelidae). Bull Entomol Res. 2013;103:373–81.
Article
PubMed
CAS
Google Scholar
Franco OL, Rigden DJ, Melo FR, Bloch C, Silva CP, Grossi de Sá MF. Activity of wheat α-amylase inhibitors towards bruchid α-amylases and structural explanation of observed specificities. Eur J Biochem. 2000;267:2166–73.
Article
CAS
PubMed
Google Scholar
Franco OL, Melo FR, Mendes PA, Paes NS, Yokoyama M, Coutinho MV, et al. Characterization of two Acanthoscelides obtectus alpha-amylases and their inactivation by wheat inhibitors. J Agric Food Chem. 2005;53:1585–90.
Article
CAS
PubMed
Google Scholar
Basi G, Schmid E, Maundrell K. TATA box mutations in the Schizosaccharomyces pombe nmt1 promoter affect transcription efficiency but not the transcription start point or thiamine repressibility. Gene. 1993;123:131–6.
Article
CAS
PubMed
Google Scholar
Bauer D. Variant calling comparison CASAVA1.8 and GATK. Nat Prec. 2011;1:1–7.
Abuín JM, Pichel JC, Pena TF, Amigo J. SparkBWA: speeding up the alignment of high-throughput DNA sequencing data. PLoS One. 2016;11(5):e0155461.
Article
PubMed
PubMed Central
CAS
Google Scholar
Meng L, Li H, Zhang L, Wang J. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J. 2015;3:269–83.
Article
Google Scholar
Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23(19):2633–5.
Article
CAS
PubMed
Google Scholar
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics version 6.0 analysis. Mol Biol Evol. 2013;30(12):2725–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406–25.
CAS
PubMed
Google Scholar
Bailey TL, Elkan C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology; 1994. p. 28–36.
Google Scholar
Toni LS, Garcia AM, Jeffrey DA, Jiang X, Stauffer BL, Miyamoto SD, et al. Optimization of phenol-chloroform RNA extraction. MethodsX. 2018;5:599–608.
Article
PubMed
PubMed Central
Google Scholar
Likhite N, Warawdekar UM. A unique method for isolation and solubilization of proteins after extraction of RNA from tumor tissue using trizol. J Biomol Tech. 2011;22:37–44.
PubMed
PubMed Central
Google Scholar
Chen M, Wu J, Wang L, Mantri N, Zhang X, Zhu Z, et al. Mapping and genetic structure analysis of the anthracnose resistance locus co-1HY in the common bean (Phaseolus vulgaris L.). PLoS One. 2017;12(1):e0169954.
Article
PubMed
PubMed Central
CAS
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25:402–8.
Article
CAS
PubMed
Google Scholar