Tanaka A, Tanaka R. Chlorophyll metabolism. Curr Opin Plant Biol. 2006;9(3):248–55.
Article
CAS
PubMed
Google Scholar
Nagata N, Tanaka R, Satoh S, Tanaka A. Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Plant Cell. 2005;17(1):233–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beale SI. Green genes gleaned. Trends Plant Sci. 2005;10(7):309–12.
Article
CAS
PubMed
Google Scholar
Kobayashi K, Masuda T. Transcriptional control for the chlorophyll metabolism. Adv Bot Res. 2019;91:133–61.
Article
CAS
Google Scholar
Nagata N, Tanaka R, Tanaka A. The major route for chlorophyll synthesis includes [3,8-divinyl]-chlorophyllide a reduction in Arabidopsis thaliana. Plant Cell Physiol. 2007;48(12):1803–8.
Article
CAS
PubMed
Google Scholar
Kurata N, Miyoshi K, Nonomura K, Yamazaki Y, Ito Y. Rice mutants and genes related to organ development, morphogenesis and physiological traits. Plant Cell Physiol. 2005;46(1):48–62.
Article
CAS
PubMed
Google Scholar
Jung KH, Hur J, Ryu CH, Choi Y, Chung YY, Miyao A, Hirochika H, An GH. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol. 2003;44(5):463–72.
Article
CAS
PubMed
Google Scholar
Zhao SL, Long WH, Wang YH, Liu LL, Wang YL, Niu M, Zheng M, Wang D, Wan JM. A rice White-stripe leaf3 (wsl3) mutant lacking an HD domain-containing protein affects chlorophyll biosynthesis and chloroplast development. J Plant Biol. 2016;59(3):282–92.
Article
CAS
Google Scholar
Zhang LL, Liu C, An XY, Wu HY, Feng Y, Wang H, Sun DJ. Identification and genetic mapping of a novel incompletely dominant yellow leaf color gene, Y1718, on chromosome 2BS in wheat. Euphytica. 2017;213(7):1–11.
Google Scholar
Wu HY, Shi NR, An XY, Liu C, Fu HF, Cao L, Feng Y, Sun DJ, Zhang LL. Candidate Genes for Yellow Leaf Color in Common Wheat (Triticum aestivum L.) and Major Related Metabolic Pathways according to Transcriptome Profiling. Int J Mol Sci. 2018;19(6):1594.
Article
PubMed Central
CAS
Google Scholar
Yaronskaya E, Ziemann V, Walter G, Averina N, Borner T, Grimm B. Metabolic control of the tetrapyrrole biosynthetic pathway for porphyrin distribution in the barley mutant albostrians. Plant J. 2003;35(4):512–22.
Article
CAS
PubMed
Google Scholar
Mueller AH, Dockter C, Gough SP, Lundqvist U, von Wettstein D, Hansson M. Characterization of Mutations in Barley fch2 Encoding Chlorophyllide a Oxygenase. Plant Cell Physiol. 2012;53(7):1232–46.
Article
CAS
PubMed
Google Scholar
Falbel TG, Staehelin LA. Characterization of a Family of Chlorophyll-Deficient Wheat (Triticum) and Barley (Hordeum-Vulgare) Mutants with Defects in the Magnesium-Insertion Step of Chlorophyll Biosynthesis. Plant Physiol. 1994;104(2):639–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guan HY, Xu XB, He CM, Liu CX, Liu Q, Dong R, Liu TS, Wang LM. Fine Mapping and Candidate Gene Analysis of the Leaf-Color Gene ygl-1 in Maize. PLoS ONE. 2016;11(4):1–19.
Article
CAS
Google Scholar
Li TC, Yang HY, Lu Y, Dong Q, Liu GH, Chen F, Zhou YB. Comparative transcriptome analysis of differentially expressed genes related to the physiological changes of yellow-green leaf mutant of maize. PeerJ. 2021;9(1):e10567.
Article
PubMed
PubMed Central
CAS
Google Scholar
Greene BA, Staehelin LA, Melis A. Compensatory Alterations in the Photochemical Apparatus of a Photoregulatory, Chlorophyll-B-Deficient Mutant of Maize. Plant Physiol. 1988;87(2):365–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bazzaz MB. New Chlorophyll Chromophores Isolated from a Chlorophyll-Deficient Mutant of Maize. Photobioch Photobiop. 1981;2(4–5):199–207.
CAS
Google Scholar
Campbell BW, Mani D, Curtin SJ, Slattery RA, Michno JM, Ort DR, Schaus PJ, Palmer RG, Orf JH, Stupar RM. Identical Substitutions in Magnesium Chelatase Paralogs Result in Chlorophyll-Deficient Soybean Mutants. G3-Genes-Genom Genet. 2015;5(1):123–31.
Google Scholar
Shiroshita Y, Yuhazu M, Hase Y, Yamada T, Abe J, Kanazawa A. Characterization of chlorophyll-deficient soybean [Glycine max (L.) Merr.] mutants obtained by ion-beam irradiation reveals concomitant reduction in isoflavone levels. Genet Resour Crop Ev. 2021;68(3):1213–23.
Article
CAS
Google Scholar
Du HY, Qi MZ, Cui XP, Cui YM, Yang H, Zhang JY, Ma YJ, Zhang SS, Zhang X, Yu DY. Proteomic and functional analysis of soybean chlorophyll-deficient mutant cd1 and the underlying gene encoding the CHLI subunit of Mg-chelatase. Mol Breeding. 2018;38(6):71.
Article
CAS
Google Scholar
Sakowska K, Alberti G, Genesio L, Peressotti A, Delle Vedove G, Gianelle D, Colombo R, Rodeghiero M, Panigada C, Juszczak R, et al. Leaf and canopy photosynthesis of a chlorophyll deficient soybean mutant. Plant Cell Environ. 2018;41(6):1427–37.
Article
CAS
PubMed
Google Scholar
Zhang H, Zhang D, Han S, Zhang X, Yu D. Identification and gene mapping of a soybean chlorophyll-deficient mutant. Plant Breeding. 2011;130(2):133–8.
Article
CAS
Google Scholar
Gao ML, Hu LL, Li YH, Weng YQ. The chlorophyll-deficient golden leaf mutation in cucumber is due to a single nucleotide substitution in CsChlI for magnesium chelatase I subunit. Theor Appl Genet. 2016;129(10):1961–73.
Article
CAS
PubMed
Google Scholar
Burnham M, Phatak SC, Peterson CE. Graft-Aided Inheritance Study of a Chlorophyll Deficient Cucumber. P Am Soc Hortic Sci. 1966;89(9):386–92.
Google Scholar
Lohani N, Jain D, Singh MB, Bhalla PL. Engineering Multiple Abiotic Stress Tolerance in Canola Brassica napus. Front Plant Sci. 2020;11(3):1–26.
Google Scholar
Song JM, Guan ZL, Hu JL, Guo CC, Yang ZQ, Wang S, Liu DX, Wang B, Lu SP, Zhou R, et al. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat Plants. 2020;6(1):34–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu LX, Zeng XH, Chen YL, Yang ZH, Qi LP, Pu YY, Yi B, Wen J, Ma CZ, Shen JX, et al. Genetic characterisation and fine mapping of a chlorophyll-deficient mutant (BnaC.ygl) in Brassica napus. Mol Breeding. 2014;34(2):603–14.
Article
CAS
Google Scholar
Wang YK, He YJ, Yang M, He JB, Xu P, Shao MQ, Chu P, Guan RZ. Fine mapping of a dominant gene conferring chlorophyll-deficiency in Brassica napus. Sci Rep-Uk. 2016;6(1):31419.
Article
CAS
Google Scholar
Chu P, Yan GX, Yang Q, Zhai LN, Zhang C, Zhang FQ, Guan RZ. iTRAQ-based quantitative proteomics analysis of Brassica napus leaves reveals pathways associated with chlorophyll deficiency. J Proteomics. 2015;113:244–59.
Article
CAS
PubMed
Google Scholar
Guo JW, Gu JK, Zhao YR, Du LF. Changes of photosystem II electron transport in the chlorophyll-deficient oilseed rape mutant studied by chlorophyll fluorescence and thermoluminescence. J Integr Plant Biol. 2007;49(5):698–705.
Article
CAS
Google Scholar
Zhao Y, Wang ML, Zhang YZ, Du LF, Pan T. A chlorophyll-reduced seedling mutant in oilseed rape, Brassica napus, for utilization in F-1 hybrid production. Plant Breeding. 2000;119(2):131–5.
Article
Google Scholar
Yi B, Zeng FQ, Lei SL, Chen YN, Yao XQ, Zhu Y, Wen J, Shen JX, Ma CZ, Tu JX, et al. Two duplicate CYP704B1-homologous genes BnMs1 and BnMs2 are required for pollen exine formation and tapetal development in Brassica napus. Plant J. 2010;63(6):925–38.
Article
CAS
PubMed
Google Scholar
Wu ZM, Zhang X, He B, Diao LP, Sheng SL, Wang JL, Guo XP, Su N, Wang LF, Jiang L, et al. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol. 2007;145(1):29–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dei M. Benzyladenine-Induced Stimulation of 5-Aminolevulinic Acid Accumulation under Various Light Intensities in Levulinic Acid-Treated Cotyledons of Etiolated Cucumber. Physiol Plantarum. 1985;64(2):153–60.
Article
CAS
Google Scholar
Rawal R, Kharangarh PR, Dawra S, Tomar M, Gupta V, Pundir CS. A comprehensive review of bilirubin determination methods with special emphasis on biosensors. Process Biochem. 2020;89:165–74.
Article
CAS
Google Scholar
Rebeiz CA, Mattheis JR, Smith BB, Rebeiz CC, Dayton DF. Chloroplast Biogenesis - Biosynthesis and Accumulation of Protochlorophyll by Isolated Etioplasts and Developing Chloroplasts. Arch Biochem Biophys. 1975;171(2):549–67.
Article
CAS
PubMed
Google Scholar
Zhao B, Wang B, Li ZH, Guo T, Zhao JW, Guan ZL, Liu KD. Identification and characterization of a new dwarf locus DS-4 encoding an Aux/IAA7 protein in Brassica napus. Theor Appl Genet. 2019;132(5):1435–49.
Article
CAS
PubMed
Google Scholar
Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999;27(2):573–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao CJ, Liu LJ, Safdar LB, Xie ML, Cheng XH, Liu YY, Xiang Y, Tong CB, Tu JX, Huang JY, et al. Characterization and Fine Mapping of a Yellow-Virescent Gene Regulating Chlorophyll Biosynthesis and Early Stage Chloroplast Development in Brassica napus. G3-Genes Genom Genet. 2020;10(9):3201–11.
CAS
Google Scholar
Zhao H, Yu L, Huai ZX, Wang XH, Ding GD, Chen SS, Li P, Xu FS. Mapping and candidate gene identification defining BnChd1-1, a locus involved in chlorophyll biosynthesis in Brassica napus. Acta Physiol Plant. 2014;36(4):859–70.
Article
CAS
Google Scholar
op den Camp RGL, Przybyla D, Ochsenbein C, Laloi C, Kim CH, Danon A, Wagner D, Hideg E, Gobel C, Feussner I, et al. Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. Plant Cell. 2003;15(10):2320–32.
Article
CAS
Google Scholar
Kim CH, Apel K. Singlet oxygen-mediated signaling in plants: moving from flu to wild type reveals an increasing complexity. Photosynth Res. 2013;116(23):455–64.
Article
CAS
PubMed
Google Scholar
Tsai CC, Wu YJ, Sheue CR, Liao PC, Chen YH, Li SJ, Liu JW, Chang HT, Liu WL, Ko YZ, et al. Molecular Basis Underlying Leaf Variegation of a Moth Orchid Mutant (Phalaenopsis aphrodite subsp formosana). Front Plant Sci. 2017;8:1333.
Article
PubMed
PubMed Central
Google Scholar
Zavaleta-Mancera HA, Thomas BJ, Thomas H, Scott IM. Regreening of senescent Nicotiana leaves II. Redifferentiation of plastids. J Exp Bot. 1999;50(340):1683–9.
CAS
Google Scholar
Yang SL, Fang GN, Zhang AP, Ruan BP, Jiang HZ, Ding SL, Liu CL, Zhang Y, Jaha N, Hu P, et al. RiceEARLY SENESCENCE 2, encoding an inositol polyphosphate kinase, is involved in leaf senescence. Bmc Plant Biol. 2020;20(1):393.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M, et al. Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell. 2007;19(4):1362–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peng G, Xie XL, Jiang Q, Song S, Xu CJ. Chlorophyll a/b binding protein plays a key role in natural and ethylene-induced degreening of Ponkan (Citrus reticulata Blanco). Sci Hortic-Amsterdam. 2013;160:37–43.
Article
CAS
Google Scholar
Haldrup A, Naver H, Scheller HV. The interaction between plastocyanin and photosystem I is inefficient in transgenic Arabidopsis plants lacking the PSI-N subunit of photosystem I. Plant J. 1999;17(6):689–98.
Article
CAS
PubMed
Google Scholar
Haldrup A, Simpson DJ, Scheller HV. Down-regulation of the PSI-F subunit of photosystem I (PSI) in Arabidopsis thaliana - The PSI-F subunit is essential for photoautotrophic growth and contributes to antenna function. J Biol Chem. 2000;275(40):31211–8.
Article
CAS
PubMed
Google Scholar
Kanehisa M, Araki M, Goto S, Hattor M, Hirakawa M, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008;36:D480–4.
Article
CAS
PubMed
Google Scholar
Mao X, Cai T, Olyarchuk JG, Wei L. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics. 2005;21:3787–93.
Article
CAS
PubMed
Google Scholar