Ting H, Xiao MA, Xin-Quan Z, Xin-Yue Z, Rui-Zhen Z, Kai-Xin FU. Comparation of SSR molecular markers analysis of annual ryegrass varieties in DUS testing. Scientia Agricultura Sinica. 2015;48(2):381–9.
Google Scholar
Hirata M, Cai H, Inoue M, Yuyama N, Miura Y, Komatsu T, Takamizo T, Fujimori M. Development of simple sequence repeat (SSR) markers and construction of an SSR-based linkage map in Italian ryegrass (Lolium Multiflorum Lam.). Theor Appl Genet. 2006;113(2):270–9. https://doi.org/10.1007/s00122-006-0292-4.
Article
CAS
PubMed
Google Scholar
Juillet. Grasses and legumes - plantes herbagères et légumineuses. 2018. p. G27–35.
Google Scholar
Julier B, Barre P, Lambroni P, Delaunay S, Thomasset M, Lafaillette F, Gensollen V. Use of GBS markers to distinguish among lucerne varieties, with comparison to morphological traits. Mol Breeding. 2018;38(11):1–12. https://doi.org/10.1007/s11032-018-0891-1.
Article
CAS
Google Scholar
Wang J, Cogan NOI, Forster JW. Prospects for applications of genomic tools in registration testing and seed certification of ryegrass varieties. Plant Breed. 2016;135:405–12. https://doi.org/10.1111/pbr.12388.
Article
CAS
Google Scholar
Zhang S, Li B, Chen Y, Shaibu AS, Zheng H, Sun J. Molecular-assisted distinctness and uniformity testing using SLAF-sequencing approach in soybean. Genes. 2020;11:175. https://doi.org/10.3390/genes11020175.
Article
CAS
PubMed Central
Google Scholar
Gilliland TJ, Annicchiarico P, Julier B, Ghesquière M. A proposal for enhanced EN herbage VCU and DUS testing procedures. Grass Forage Sci. 2020;75(3):227–41. https://doi.org/10.1111/gfs.12492.
Article
Google Scholar
KöLliker R, Boller B, Widmer F. Marker assisted polycross breeding to increase diversity and yield in perennial ryegrass (Lolium perennial L.). Euphytica. 2005;146:55–65. https://doi.org/10.1007/s10681-005-6036-8.
Article
CAS
Google Scholar
Yang JI, Zhang XQ, Xiao MA, Chu XJ, Fang LI, Meng Y. Genetic analysis of Lolium multiflorum hybrids and their progenies detected using SRAP markers. Acta Pratacul Sin. 2009;4(18):260–5.
Google Scholar
Knorst V, Byrne S, Yates S, Asp T, Widmer F, Studer B, Kölliker R. Pooled DNA sequencing to identify SNPs associated with a major QTL for bacterial wilt resistance in Italian ryegrass (Lolium multiflorum Lam.). Theor Appl Genet. 2019;132:947–58. https://doi.org/10.1007/s00122-018-3250-z.
Article
CAS
PubMed
Google Scholar
Pupilli F, Labombarda P, Scotti C, Arcioni S. RFLP analysis allows for the identification of alfalfa ecotypes. Plant Breed. 2000;119:271–6. https://doi.org/10.1046/j.1439-0523.2000.00478.x.
Article
CAS
Google Scholar
Nie G, Huang T, Ma X, Huang L, Peng Y, Yan Y, Li Z, Wang X, Zhang X. Genetic variability evaluation and cultivar identification of tetraploid annual ryegrass using SSR markers. Peer J. 2019;7:e7742. https://doi.org/10.7717/peerj.7742.
Article
PubMed
PubMed Central
Google Scholar
Kuang M, Yang WH, Xu HX, Wang YQ. Construction of DNA Fingerprinting and analysis of genetic diversity with SSR markers for cotton major varieties in China. Scientia Agricultura Sinica. 2011;44(1):20–7.
Google Scholar
Humberto RM, Amalio SV, Octavio M, June S, Corina HK, Celso C, Tianzhen Z. Analysis and optimization of bulk DNA sampling with binary scoring for germplasm characterization. PLoS One. 2013;8:e79936.
Article
Google Scholar
Kölliker R, Jones ES, Jahufer MZZ, Forster JW. Bulked AFLP analysis for the assessment of genetic diversity in white clover (Trifolium repens L.). Euphytica. 2001;121:305–15. https://doi.org/10.1023/A:1012048103585.
Article
Google Scholar
Byrne S, Czaban A, Studer B, Panitz F, Bendixen C, Asp T. Genome wide allele frequency fingerprints (GWAFFS) of populations via genotyping by sequencing. PLoS One. 2013;8:e57438. https://doi.org/10.1371/journal.pone.005743.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA. Harnessing the power of RAD-seq for ecological and evolutionary genomics. Nat Rev Genet. 2016;17:81–92. https://doi.org/10.1038/nrg.2015.28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA. Rapid SNP discovery and genetic mapping using sequenced rad markers. PLoS One. 2008;3:e3376.
Article
Google Scholar
Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884–90. https://doi.org/10.1101/274100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Knorst V, Yates S, Byrne S, Asp T, Widmer F, Studer B, Kölliker R. First assembly of the gene-space of Lolium multiflorum and comparison to other Poaceae genomes. Grassland Sci. 2019;65:125–34. https://doi.org/10.1111/grs.12225.
Article
CAS
Google Scholar
Kopecky D, Havránková M, Loureiro J, Castro S, Lukaszewski AJ, Barto J, Kopecká J, El Dole J. Physical distribution of homoeologous recombination in individual chromosomes of Festuca pratensis in Lolium multiflorum. Cytogenet Genome Res. 2010;129:162–72. https://doi.org/10.1159/000313379.
Article
CAS
PubMed
Google Scholar
Li H, Richard D. Fast and accurate short read alignment with burrows–wheeler transform. Bioinformatics. 2010;26(5):589–95. https://doi.org/10.1093/bioinformatics/btp698.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Der-Auwera GA, Carneiro MO, Hartl C, Poplin R, Thibault J. From FastQ data to high confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013;43(1110):11.10.1-11.10.33. https://doi.org/10.1002/0471250953.bi1110s43.
Article
Google Scholar
Smouse RPP, Peakall R, GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics. 2012;28(19):2537–9. https://doi.org/10.1093/bioinformatics/bts460.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pembleton LW, Cogan NOI, Forster JW. STAMPP: An R package for calculation of genetic differentiation and structure of mixed-ploidy level populations. Mol Ecol Resour. 2013;13:946–52. https://doi.org/10.1111/1755-0998.12129.
Article
CAS
PubMed
Google Scholar
Whitlock MC. G’st and D do not replace Fst. Mol Ecol. 2015;20:1083–91. https://doi.org/10.1111/j.1365-294X.2010.04996.x.
Article
Google Scholar
Xu S, Song N, Zhao L, Cai S, Han Z, Gao T. Genomic evidence for local adaptation in the ovoviviparous marine fish Sebastiscus marmoratus with a background of population homogeneity. Sci Rep. 2017;7(1):1–12. https://doi.org/10.1038/s41598-017-01742-z.
Article
CAS
Google Scholar
Julio R, Albert FM, Carlos SJ, Sara GR, Pablo L, Ramos-Onsins SE, Alejandro SG. Dnasp 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 2017;34(12):3299–302. https://doi.org/10.1093/molbev/msx248.
Article
CAS
Google Scholar
Hernández-Langford DG, Siqueiros-Delgado ME. Ruíz-Sánchez, E, Nuclear phylogeography of the temperate tree species Chiranthodendron pentadactylon (Malvaceae): quaternary relicts in Mesoamerican cloud forests. BMC Evol Biol. 2020;20:44. https://doi.org/10.1186/s12862-020-01605-8.
Article
PubMed
PubMed Central
Google Scholar
Nikas JB. A mathematical model for short-term vs. Long-term survival in patients with glioma. Am J Cancer Res. 2014;4:862–73.
PubMed
PubMed Central
Google Scholar
Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 2010;11(1):1–15. https://doi.org/10.1186/1471-2156-11-94.
Article
Google Scholar
Ivanizs L, Monostori I, Farkas A, Megyeri M, Mikó P, Türkösi E, Gaál E, Lenykó-Thegze A, Szőke-Pázsi K, Szakács É, Darkó É, Kiss T, Kilian A, Molnár I. Unlocking the genetic diversity and population structure of a wild gene source of wheat, Aegilops biuncialis Vis., and its relationship with the heading time. Front Plant Sci. 2019;10:1531. https://doi.org/10.3389/fpls.2019.01531.
Article
PubMed
PubMed Central
Google Scholar
Hubisz MJ, Falush D, Stephens M, Pritchard JK. Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour. 2009;9:1322–32. https://doi.org/10.1111/j.1755-0998.2009.02591.x.
Article
PubMed
PubMed Central
Google Scholar
Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59.
Article
CAS
Google Scholar
Evanno GS, Regnaut SJ, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. MOL ECOL. 2005;14(8):2611–20.
Article
CAS
Google Scholar
Hall BG. Building phylogenetic trees from molecular data with MEGA. Mol Biol Evol. 2013;5:1229–35.
Article
Google Scholar
Liu X, Huang M, Fan B, Buckler ES, Zhang Z. Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genet. 2016;12(2):e1005767.
Article
Google Scholar
Puecher DI, Robredo CG, Rios RD, Rimieri P. Genetic variability measures among Bromus Catharticus vahl. populations and varieties with RAPD and AFLP markers. Euphytica. 2001;121:229–36. https://doi.org/10.1023/A:1012068415647.
Article
CAS
Google Scholar
Roldán-Ruiz I, Dendauw J, Van Bockstaele E, Depicker A, De Loose M. AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Mol Breed. 2000;6:125–34. https://doi.org/10.1023/A:1009680614564.
Article
Google Scholar
Singh N, Choudhury DR, Singh AK, Kumar S, Srinivasan K, Tyagi RK, Singh NK, Singh R, Jordan IK. Comparison of SSR and SNP markers in estimation of genetic diversity and population structure of Indian rice varieties. PLoS One. 2013;8:e84136. https://doi.org/10.1371/journal.pone.0084136.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu S, Feuerstein U, Luesink W, Schulze S, Asp T, Studer B, Becker HC, Dehmer KJ. DArT, SNP, and SSR analyses of genetic diversity in Lolium perenne L using bulk sampling. BMC Genet. 2018;19(1):10.
Article
Google Scholar
Gilliland TJ, Coll R, Calsyn E, De Loose M, van Eijk MJT, Roldán-Ruiz I. Estimating genetic conformity between related ryegrass (Lolium) varieties. 1. morphology and biochemical characterization. Mol Breed. 2000;6:569–80. https://doi.org/10.1023/A:1011361731545.
Article
Google Scholar
Barot S, Allard V, Cantarel A, Enjalbert J, Gauffreteau A, Goldringer I, Lata JC, Le Roux X, Niboyet A, Porcher E. Designing mixtures of varieties for multifunctional agriculture with the help of ecology. Rev Agron Sustain Devel. 2017;37:13. https://doi.org/10.1007/s13593-017-0418-x.
Article
Google Scholar
Gilliland TJ, Gensollen V. Review of the protocols used for assessment of DUS and VCU in Europe-Perspectives [M]//Sustainable use of genetic diversity in forage and turf breeding. Dordrecht: Springer; 2010. p. 261–75.
Google Scholar
Pembleton LW, Drayton MC, Bain M, Baillie RC, Inch C, Spangenberg GC, Wang J, Forster JW, Cogan NO. Targeted genotyping-by-sequencing permits cost-effective identification and discrimination of pasture grass species and cultivars. Theor Appl Genet. 2016;129(5):991–1005. https://doi.org/10.1007/s00122-016-2678-2.
Article
CAS
PubMed
Google Scholar
Annicchiarico P, Nazzicari N, Ananta A, Carelli M, Wei Y, Brummer EC. Assessment of cultivar distinctness in alfalfa: a comparison of genotyping-by-sequencing, simple-sequence repeat marker, and morphophysiological observations. Plant Genome. 2016;9(2). https://doi.org/10.3835/plantgenome2015.10.0105
Smith JSC. The future of essentially derived variety (EDV) status: predominantly more explanations or essential change. Agronomy. 2021;11:1261. https://doi.org/10.3390/agronomy11061261.
Article
Google Scholar