Roberts K. How the cell wall acquired a cellular context. Plant Physiol. 2001;125(1):127–30. https://doi.org/10.1104/pp.125.1.127.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carpita NC, Gibeaut DM. Structural models of primary cell walls in flowering plants, consistency of molecular structure with the physical properties of the walls during growth. Plant J. 1993;3(1):1–30. https://doi.org/10.1111/j.1365-313X.1993.tb00007.x.
Article
CAS
PubMed
Google Scholar
Cassab GI, Varner JE. Cell wall proteins. Annu Rev Plant Physiol Plant Mol Biol. 1992;39(4):321–53.
Google Scholar
Albenne C, Canut H, Elisabeth J. Plant cell wall proteomics: the leadership of Arabidopsis thaliana. Front Plant Sci. 2013;4(4):111.
PubMed
PubMed Central
Google Scholar
Zhu JM, Chen SX, Alvarez S, Asirvatham VS, Schachtman DP, Wu YJ, et al. Cell wall proteome in the maize primary root elongation zone. I. Extraction and identification of water-soluble and lightly ionically bound proteins. Plant Physiol. 2006;140(1):311–25. https://doi.org/10.1104/pp.105.070219.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jamet E, Canut H, Boudart G, Pont-Lezica RF. Cell wall proteins: a new insight through proteomics. Trends Plant Sci. 2006;11(1):33–9. https://doi.org/10.1016/j.tplants.2005.11.006.
Article
CAS
PubMed
Google Scholar
Sasidharan R, Voesenek LACJ, Pierik R. The regulation of cell wall extensibility during shade avoidance: a study using two contrasting ecotypes of Stellaria longipes. Plant Physiol. 2008;148(3):1557–69. https://doi.org/10.1104/pp.108.125518.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krzesłowska M. The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiol Plant. 2011;33(1):35–51. https://doi.org/10.1007/s11738-010-0581-z.
Article
CAS
Google Scholar
Wang X, Komatsu S. Plant subcellular proteomics: application for exploring optimal cell function in soybean. J Proteome. 2016;143(4):45–56. https://doi.org/10.1016/j.jprot.2016.01.011.
Article
CAS
Google Scholar
Calderan-Rodrigues MJ, Jame E, Douché T, Bonassi MBR, Catald TR, Fonseca JG, et al. Cell wall proteome of sugarcane stems: comparison of a destructive and a nondestructive extraction method showed differences in glycoside hydrolases and peroxidases. BMC Plant Biol. 2016;16(1):14. https://doi.org/10.1186/s12870-015-0677-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duruflé H, San Clemente H, Balliau T, Zivy M, Dunand C, Jamet E. Cell wall proteome analysis of Arabidopsis thaliana mature stems. Proteomics. 2017;17(8):1600449. https://doi.org/10.1002/pmic.201600449.
Article
CAS
Google Scholar
Hervé V, Duruflé H, San Clemente H, Albenne C, Balliau T, Zivy M, et al. An enlarged cell wall proteome of Arabidopsis thaliana rosettes. Proteomics. 2016;16(24):3183–7. https://doi.org/10.1002/pmic.201600290.
Article
CAS
PubMed
Google Scholar
Nguyen-Kim H, San Clemente H, Balliau T, Zivy M, Dunand C, Albenne C, et al. Arabidopsis thaliana root cell wall proteomics: increasing the proteome coverage using a combinatorial peptide ligand library and description of unexpected Hyp in peroxidase amino acid sequences. Proteomics. 2016;16(3):491–503. https://doi.org/10.1002/pmic.201500129.
Article
CAS
PubMed
Google Scholar
Chivasa S, Ndimba BK, Simon WJ, Robertson D, Yu XL, Knox JP, et al. Proteomic analysis of the Arabidopsis thaliana cell wall. Electrophoresis. 2002;23(11):1754–65. https://doi.org/10.1002/1522-2683(200206)23:11<1754::AID-ELPS1754>3.0.CO;2-E.
Article
CAS
PubMed
Google Scholar
Borderies G, Jamet E, Lafitte C, Rossignol M, Jauneau A, Boudart G, et al. Proteomics of loosely bound cell wall proteins of Arabidopsis thaliana cell suspension cultures: a critical analysis. Electrophoresis. 2003;24(19–20):3421–32. https://doi.org/10.1002/elps.200305608.
Article
CAS
PubMed
Google Scholar
Feiz L, Irshad M, Pont-Lezica RF, Canut H, Jamet E. Evaluation of cell wall preparations for proteomics: a new procedure for purifying cell walls from Arabidopsis hypocotyls. Plant Methods. 2006;2(1):10. https://doi.org/10.1186/1746-4811-2-10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Irshad M, Canut H, Borderies G, Pont-Lezica R, Jamet E. A new picture of cell wall protein dynamics in elongating cells of Arabidopsis thaliana: confirmed actors and newcomers. BMC Plant Biol. 2008;8(1):e94.
Article
Google Scholar
Bayer EM, Bottrill AR, Walshaw J, Vigouroux M, Naldrett MJ, Thomas CL, et al. Arabidopsis cell wall proteome defined using multidimensional protein identification technology. Proteomics. 2006;6(1):301–11. https://doi.org/10.1002/pmic.200500046.
Article
CAS
PubMed
Google Scholar
Boudart G, Jamet E, Rossignol M, Lafitte C, Borderies G, Jauneau A, et al. Cell wall proteins in apoplastic fluids of Arabidopsis thaliana rosettes: identification by mass spectrometry and bioinformatics. Proteomics. 2005;5(1):212–21. https://doi.org/10.1002/pmic.200400882.
Article
CAS
PubMed
Google Scholar
Douché T, San Clemente H, Burlat V, Roujol D, Valot B, Zivy M, et al. Brachypodium distachyon as a model plant toward improved biofuel crops: search for secreted proteins involved in biogenesis and disassembly of cell wall polymers. Proteomics. 2013;13(16):2438–54. https://doi.org/10.1002/pmic.201200507.
Article
CAS
PubMed
Google Scholar
Francin-Allami M, Merah K, Albenne C, Rogniaux H, Pavlovic M, Lollier V, et al. Cell wall proteomic of Brachypodium distachyon grains: a focus on cell wall remodeling proteins. Proteomics. 2015;15(13):2296–306. https://doi.org/10.1002/pmic.201400485.
Article
CAS
PubMed
Google Scholar
Francin-Allami M, Lollier V, Pavlovic M, San Clemente H, Rogniaux H, Jamet E, et al. Understanding the remodelling of cell walls during Brachypodium distachyon grain development through a sub-cellular quantitative proteomic approach. Proteomes. 2016;4(3):21. https://doi.org/10.3390/proteomes4030021.
Article
CAS
PubMed Central
Google Scholar
Chabi M, Goulas E, Lille U. A cell wall proteome and targeted cell wall analyses provide novel information on hemicellulose metabolism in flax. Mol Cell Proteomics. 2017;16(9):1634–51. https://doi.org/10.1074/mcp.M116.063727.
Article
CAS
PubMed
PubMed Central
Google Scholar
Day A, Fénart S, Neutelings G, Hawkins S, Rolando C, Tokarski C. Identification of cell wall proteins in the flax (Linum usitatissimum) stem. Proteomics. 2013;13(5):812–25. https://doi.org/10.1002/pmic.201200257.
Article
CAS
PubMed
Google Scholar
Calderan-Rodrigues MJ, Jamet E, Bonassi MBCR, Guidetti-Gonzalez S, Begossi AC, Setem L, et al. Cell wall proteomics of sugarcane cell suspension cultures were predicted to be localized in non-secretory pathway. Proteomics. 2014;14(6):738–49. https://doi.org/10.1002/pmic.201300132.
Article
CAS
PubMed
Google Scholar
Fonseca JG, Calderan-Rodrigues MJ, de Moraes FE, Cataldi TR, Jamet E, Labate CA. Cell wall proteome of sugarcane young and mature leaves and stems. Proteomics. 2018;189(2):9853.
Google Scholar
Chen XY, Kim ST, Cho WK, Cho WK, Rim Y, Kim S, et al. Proteomics of weakly bound cell wall proteins in rice calli. J Plant Physiol. 2009;166(7):675–85. https://doi.org/10.1016/j.jplph.2008.09.010.
Article
CAS
PubMed
Google Scholar
Pandey A, Rajamani U, Verma J, Pratigya S, Navjyoti C, Asis D, et al. Identification of extracellular matrix proteins of rice (Oryza sativa L.) involved in dehydration-responsive network: a proteomic approach. J Proteome Res. 2010;9(7):3443–64. https://doi.org/10.1021/pr901098p.
Article
CAS
PubMed
Google Scholar
Cho WK, Hyun TK, Kumar D, Rim Y, Chen XY, Jo Y, et al. Proteomic analysis to identify tightly-bound cell wall protein in rice calli. Mol Cells. 2015;38(8):685–96. https://doi.org/10.14348/molcells.2015.0033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Strasser R. Biological significance of complex N-glycans in plants and their impact on plant physiology. Front Plant Sci. 2004;5:363.
Google Scholar
Nguema-Ona E, Vicré-Gibouin M, Gotté M, Plancot B, Lerouge P, Bardor M, et al. Cell wall O-glycoproteins and N-glycoproteins: aspects of biosynthesis and function. Front Plant Sci. 2014;5:499.
Article
Google Scholar
Minic Z, Jamet E, Négroni L. Arsene der Garabedian P, Zivy M, et al. a sub-proteome of Arabidopsis thaliana mature stems trapped on Concanavalin a is enriched in cell wall glycoside hydrolases. J Exp Bot. 2007;58(10):2503–12. https://doi.org/10.1093/jxb/erm082.
Article
CAS
PubMed
Google Scholar
Catala C, Howe KJ, Hucko S, Rose JK, Thannhauser TW. Towards characterization of the glycoproteome of tomato (Solanum lycopersicum) fruit using concanavalin a lectin affinity chromatography and LC-MALDI-MS/MS analysis. Proteomics. 2011;11(8):1530–44. https://doi.org/10.1002/pmic.201000424.
Article
CAS
PubMed
Google Scholar
Ruiz-May E, Kim SJ, Brandizzi F, Rose JKC. The secreted plant N-glycoproteome and associated secretory pathways. Front Plant Sci. 2012;3:117.
CAS
PubMed
PubMed Central
Google Scholar
Ruiz-May E, Hucko S, Howe KJ, Zhang S, Sherwood RW, Thannhauser TW, et al. A comparative study of lectin affinity based plant N-glycoproteome profiling using tomato fruit as a model. Mol Cell Proteomics. 2013;13(2):566–79. https://doi.org/10.1074/mcp.M113.028969.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barba-Espin G, Dedvisitsakul P, Hagglund P, Svensson B, Finnie C. Gibberellic acid-induced aleurone layers responding to heat shock or tunicamycin provide insight into the N-glycoproteome, protein secretion, and endoplasmic reticulum stress. Plant Physiol. 2014;164(2):951–65. https://doi.org/10.1104/pp.113.233163.
Article
CAS
PubMed
Google Scholar
Dey S, Giri B. Fluoride fact on human health and health problems: a review. Med Clin Rev. 2016;2(1):11.
Article
Google Scholar
Ruan J, Wong MH. Accumulation of fluoride and aluminium related to different varieties of tea plant. Environ Geochem Health. 2001;23(1):53–63. https://doi.org/10.1023/A:1011082608631.
Article
CAS
Google Scholar
Xie ZL, Chen Z, Sun WT, Guo XJ, Yin B, Wang JH. Distribution of aluminum and fluoride in tea plant and soil of tea garden in central and Southwest China. Chin Geogr Sci. 2007;17(4):376–82. https://doi.org/10.1007/s11769-007-0376-3.
Article
Google Scholar
Gao HJ, Zhao Q, Zhang XC, Wan XC, Mao JD. Localization of fluoride and aluminum in subcellular fractions of tea leaves and roots. J Agr Food Chem 2014;62(10):2313–2319, DOI: https://doi.org/10.1021/jf4038437.
Article
CAS
Google Scholar
Cai HM, Peng CY, Chen J, Hou RY, Gao HJ, Wan XC. X-ray photoelectron spectroscopy surface analysis of fluoride stress in tea (Camellia sinensis (L.) O. Kuntze) leaves. J Fluor Chem. 2014;158:11–5. https://doi.org/10.1016/j.jfluchem.2013.11.012.
Article
CAS
Google Scholar
Liu YL, Cao D, Ma LL, Jin XF, Yang PF, Ye F, et al. TMT-based quantitative proteomics analysis reveals the response of Camellia sinensis to fluoride. J Proteome. 2018;176:71–81. https://doi.org/10.1016/j.jprot.2018.02.001.
Article
CAS
Google Scholar
Zhang M, Chen GX, Lv DW, Li XH, Yan YM. N-linked glycoproteome profiling of seedling leaf in Brachypodium distachyon L. J Proteome. 2015;14(4):1727–38. https://doi.org/10.1021/pr501080r.
Article
CAS
Google Scholar
Augur C, Stiefel V, Darvill A, Albersheim P, Puigdomenech P. Molecular cloning and pattern of expression of an α-L-fucosidase gene from pea seedlings. J Biol Chem. 1995;270(42):24839–43. https://doi.org/10.1074/jbc.270.42.24839.
Article
CAS
PubMed
Google Scholar
Boudart G, Minic Z, Albenne C, Canut H, Jamet E, Pont-Lezica RF. Cell Wall Proteome. In: Šamaj J, Thelen J, editors. Plant proteomics. Berlin: Springer; 2007. p. 169–85.
Google Scholar
Minic Z. Physiological roles of plant glycoside hydrolases. Planta. 2008;227(4):723–40. https://doi.org/10.1007/s00425-007-0668-y.
Article
CAS
PubMed
Google Scholar
Minic Z, Jouanin L. Plant glycoside hydrolases involved in cell wall polysaccharide degradation. Plant Physiol Biochem. 2006;44(7–9):435–49. https://doi.org/10.1016/j.plaphy.2006.08.001.
Article
CAS
PubMed
Google Scholar
Ketudat Cairns JR, Esen A. β -glucosidases. Cell Mol Life Sci. 2010;67(20):3389–405. https://doi.org/10.1007/s00018-010-0399-2.
Article
CAS
PubMed
Google Scholar
Fujita K, Takashi Y, Obuchi E, Kitahara K, Suganuma T. Characterization of a novel beta-L-arabinofuranosidase in Bifidobacterium longum: functional elucidation of a DUF1680 protein family member. J Biol Chem. 2014;289(8):5240–9. https://doi.org/10.1074/jbc.M113.528711.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rast DM, Baumgartner D, Mayer C, Hollenstein GO. Cell wall-associated enzymes in fungi. Phytochemistry. 2003;64(2):339–66. https://doi.org/10.1016/S0031-9422(03)00350-9.
Article
CAS
PubMed
Google Scholar
Hradilova J, Rehulka P, Rehulkova H, Vrbova M, Griga M, Brzobohaty B. Comparative analysis of proteomic changes in contrasting flax cultivars upon cadmium exposure. Electrophoresis. 2010;31(2):421–31. https://doi.org/10.1002/elps.200900477.
Article
CAS
PubMed
Google Scholar
Frison M, Parrou JL, Guillaumot D, Masquelier D, François J, Chaumont F, et al. The Arabidopsis thaliana trehalase is a plasma membrane-bound enzyme with extracellular activity. FEBS Lett. 2007;581(21):4010–6. https://doi.org/10.1016/j.febslet.2007.07.036.
Article
CAS
PubMed
Google Scholar
Calderan-Rodrigues MJ, Fonseca JG, Edgar de Moraes F, Setem LV, Begossi AC, Labate CA. Plant cell wall proteomics: a focus on monocot species, Brachypodium distachyon, Saccharum spp. and Oryza sativa. Int J Mol Sci. 2019;20(8):1975. https://doi.org/10.3390/ijms20081975.
Article
CAS
PubMed Central
Google Scholar
DeMason DA, Madore MA, Chandra Sekhar KN, Harris MJ. Role of α-galactosidase in cell wall metabolism of date palm (Phoenix dactylifera) endosperm. Protoplasma. 1992;166(3-4):177–86. https://doi.org/10.1007/BF01322780.
Roitsch T, González MC. Function and regulation of plant invertases: sweet sensations. Trends Plant Sci. 2004;9(12):606–13. https://doi.org/10.1016/j.tplants.2004.10.009.
Article
CAS
PubMed
Google Scholar
Veillet F, Gaillard C, Coutos-Thévenot P, La Camera S. Targeting the AtCWIN1 gene to explore the role of invertases in sucrose transport in roots and during Botrytis cinerea infection. Front Plant Sci. 2016;7:1899.
Article
Google Scholar
Wolf S, Mouille G, Pelloux J. Homogalacturonan methyl-esterification and plant development. Mol Plant. 2009;2(5):851–60. https://doi.org/10.1093/mp/ssp066.
Article
CAS
PubMed
Google Scholar
Atmodjo MA, Hao Z, Mohnen D. Evolving views of pectin biosynthesis. Ann Rev Plant Biol. 2013;64(1):747–79. https://doi.org/10.1146/annurev-arplant-042811-105534.
Article
CAS
Google Scholar
Philippe F, Pelloux J, Rayon C. Plant pectin acetylesterase structure and function: new insights from bioinformatics analysis. BMC Genomics. 2017;18(1):456. https://doi.org/10.1186/s12864-017-3833-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gall HL, Philippe F, Domon JM, Gillet F, Pelloux J, Rayon C. Cell wall metabolism in response to abiotic stress. Plants. 2015;4(1):112–66. https://doi.org/10.3390/plants4010112.
Article
PubMed
PubMed Central
Google Scholar
Gao YP, He CW, Zhang DM, Liu XL, Xu ZP, Tian YB, et al. Two trichome birefringence-like proteins mediate xylan acetylation, which is essential for leaf blight resistance in rice. Plant Physiol. 2017;173(1):470–81. https://doi.org/10.1104/pp.16.01618.
Article
CAS
PubMed
Google Scholar
Megumi M, Yoshinobu K. Structural features of free N-glycans occurring in plants and functional features of de-N-glycosylation enzymes, ENGase, and PNGase: the presence of unusual plant complex type N-glycans. Front Plant Sci. 2014;5:429.
Google Scholar
Cosgrove DJ. Growth of the plant cell wall. Nat Rev Mol Cell Biol. 2005;6(11):850–61. https://doi.org/10.1038/nrm1746.
Article
CAS
PubMed
Google Scholar
Van der Hoorn RA. Plant proteases: from phenotypes to molecular mechanisms. Ann Rev Plant Biol. 2008;59(1):191–223. https://doi.org/10.1146/annurev.arplant.59.032607.092835.
Article
CAS
Google Scholar
Fagerstedt KV, Kukkola EM, Koistinen VVT, Takahashi J, Marjamaa K. Cell wall lignin is polymerised by class III secretable plant peroxidases in Norway spruce. J Integr Plant Biol. 2010;52(2):186–94. https://doi.org/10.1111/j.1744-7909.2010.00928.x.
Article
CAS
PubMed
Google Scholar
Shigeto J, Tsutsumi Y. Diverse functions and reactions of class III peroxidases. New Phytol. 2006;209(4):1395–402.
Article
Google Scholar
Passardi F, Penel C, Dunand C. Performing the paradoxical: how plant peroxidases modify the cell wall. Trends Plant Sci. 2004;9(11):534–40. https://doi.org/10.1016/j.tplants.2004.09.002.
Article
CAS
PubMed
Google Scholar
Wakabayashi K, Soga K, Hoson T. Phenylalanine ammonia-lyase and cell wall peroxidase are cooperatively involved in the extensive formation of ferulate networks in cell walls of developing rice shoots. J Plant Physiol. 2012;169(3):262–7. https://doi.org/10.1016/j.jplph.2011.10.002.
Article
CAS
PubMed
Google Scholar
Francoz E, Ranocha P, Nguyen-Kim H, Jamet E, Burlat V, Dunand C. Roles of cell wall peroxidases in plant development. Phytochemistry. 2015;112(1):15–21. https://doi.org/10.1016/j.phytochem.2014.07.020.
Article
CAS
PubMed
Google Scholar
Claus H. Laccases: structure, reaction, distribution. Micron. 2004;35(1–2):93–6. https://doi.org/10.1016/j.micron.2003.10.029.
Article
CAS
PubMed
Google Scholar
Wang Y, Bouchabke-Coussa O, Lebris P, Antelme S, Soulhat C, Gineau E, et al. LACCASE5 is required for lignification of the Brachypodium distachyon culm. Plant Physiol. 2015;168(1):192–204. https://doi.org/10.1104/pp.114.255489.
Article
CAS
PubMed
PubMed Central
Google Scholar
Daniel B, Pavkov-Keller T, Steiner B, Dordic A, Gutmann A, Nidetzky B, et al. Oxidation of monolignols by members of the berberine bridge enzyme family suggests a role in plant cell wall metabolism. J Biol Chem. 2015;290(30:18770–81.
Article
Google Scholar
Sedbrook JC, Carroll KL, Hung KF, Masson PH, Somerville CR. The Arabidopsis SKU5 gene encodes an extracellular glycosyl phosphatidylinositol-anchored glycoprotein involved in directional root growth. Plant Cell. 2002;14(7):1635–48. https://doi.org/10.1105/tpc.002360.
Article
CAS
PubMed
PubMed Central
Google Scholar
MacMillan C, Taylor L, Bi Y, Southerton S, Southerton SG, Evans R, et al. The fasciclin-like arabinogalactan protein family of Eucalyptus grandis contains members that impact wood biology and biomechanics. New Phytol. 2015;206(4):1314–27. https://doi.org/10.1111/nph.13320.
Article
CAS
PubMed
Google Scholar
Groover A, Ribischon M. Developmental mechanisms regulating secondary growth in woody plants. Curr Opin Plant Biol. 2006;9(1):55–8. https://doi.org/10.1016/j.pbi.2005.11.013.
Article
CAS
PubMed
Google Scholar
Faik A, Abouzouhair J, Sarhan F. Putative fasciclin-like arabinogalactan-proteins (FLA) in wheat (TriticuM aestivum) and rice (Oryza sativa): identification and bioinformatic analyses. Mole Genet Genomics. 2006;276(5):478–94. https://doi.org/10.1007/s00438-006-0159-z.
Article
CAS
Google Scholar
Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Tran LP. Sensing the environment: key roles of membrane-localized kinases in plant perception and response to abiotic stress. J Exp Bot. 2013;64(2):445–58. https://doi.org/10.1093/jxb/ers354.
Article
CAS
PubMed
Google Scholar
Torii KU. Leucine-rich repeat receptor kinases in plants: structure, function, and signal transduction pathways. Int Rev Cytol 2004;234(0):1–46, DOI: https://doi.org/10.1016/S0074-7696(04)34001-5.
Debono A, Yeats T, Rose J, Bird D, Jetter R, Kunst L, et al. Arabidopsis LTPG is a glycosylphosphatidylinositol-anchored lipid transfer protein required for export of lipids to the plant surface. Plant Cell. 2009;21(4):1230–8. https://doi.org/10.1105/tpc.108.064451.
Nieuwland J, Feron R, Huisman BA, Fasolino A, Hilbers CW, Derksen J, et al. Lipid transfer proteins enhance cell wall extension in tobacco. Plant Cell. 2005;17(7):2009–19. https://doi.org/10.1105/tpc.105.032094.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li C, Chen G, Mishina K, Yamaji N, Ma JF, Yukuhiro F, et al. A GDSL-motif esterase/ acyltransferase/lipase is responsible for leaf water retention in barley. Plant Direct. 2017;1(5):e00025. https://doi.org/10.1002/pld3.25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao M, Yin X, Yang W, Lam S, Tong X, Liu J, et al. GDSL lipases modulate immunity through lipid homeostasis in rice. PLoS Pathog. 2017;13(11):e1006724. https://doi.org/10.1371/journal.ppat.1006724.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang HH, Wang ML, Li YQ, Yan W, Chang ZY, Ni HL, et al. GDSL esterase/lipases OsGELP34 and OsGELP110/OsGELP115 are essential for rice pollen development. J Integr Plant Biol. 2020;62(10):1574–93. https://doi.org/10.1111/jipb.12919.
Article
CAS
PubMed
Google Scholar
Draeger C, Fabrice TN, Gineau E, Mouille G, Kuhn BM, Moller I, et al. Arabidopsis leucine-rich repeat extension (LRX) proteins modify cell wall composition and influence plant growth. BMC Plant Biol. 2015;15(1):155. https://doi.org/10.1186/s12870-015-0548-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao CZ, Zayed O, Yu ZP, Jiang W, Zhu PP, Hsu CC, et al. Leucine-rich repeat extensin proteins regulate plant salt tolerance in Arabidopsis. P Natl Aca Sci USA. 2018;115(51):13123–8. https://doi.org/10.1073/pnas.1816991115.
Article
CAS
Google Scholar
Liu CG, Mehdy MC. A nonclassical arabinogalactan protein gene highly expressed in vascular tissues, AGP31, is transcriptionally repressed by methyl jasmonic acid in Arabidopsis. Plant Physiol. 2007;145(3):863–74. https://doi.org/10.1104/pp.107.102657.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gong SY, Huang GQ, Sun X, Li P, Zhao LL, Zhang DJ, et al. GhAGP31, a cotton non-classical arabinogalactan protein, is involved in response to cold stress during early seedling development. Plant Biol. 2012;14(3):447–57. https://doi.org/10.1111/j.1438-8677.2011.00518.x.
Article
CAS
PubMed
Google Scholar
Jiao HJ, Liu X, Sun SG, Wang P, Qiao X, Li JM, et al. The unique evolutionary pattern of the Hydroxyproline-rich glycoproteins superfamily in Chinese white pear (Pyrus bretschneideri). BMC Plant Biol. 2018;18(1):36. https://doi.org/10.1186/s12870-018-1252-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaida R, Serada S, Norioka N, Norioka S, Neumetzler L, Pauly M, et al. Potential role for purple acid phosphatase in the dephosphorylation of cell wall proteins in tobacco cells. Plant Physiol. 2010;153(2):603–10. https://doi.org/10.1104/pp.110.154138.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gang DR, Costa MA, Fujita M, Dinkova-Kostova AT, Wang HB, Burlat V, et al. Regiochemical control of monolignol radical coupling: a new paradigm for lignin and lignan biosynthesis. Chem Biol. 1996;6(3):133–41.
Google Scholar
Pickel B, Pfannstiel J, Steudle A, Lehmann A, Gerken U, Pleiss J, et al. A model of dirigent proteins derived from structural and functional similarities with allene oxide cyclase and lipocalins. FEBS J. 2012;279(11):1980–93. https://doi.org/10.1111/j.1742-4658.2012.08580.x.
Article
CAS
PubMed
Google Scholar
Paniagua C, Bilkova A, Jackson P, Dabravolski S, Ribe W, Didi V, et al. Dirigent proteins in plants: modulating cell wall metabolism during abiotic and biotic stress exposure. J Exp Bot. 2017;68(13):3287–301. https://doi.org/10.1093/jxb/erx141.
Article
CAS
PubMed
Google Scholar
Ruan XM, Luo F, Li DD, Zhang J, Liu ZH, Xu WL, et al. Cotton BCP genes encoding putative blue copper-binding proteins are functionally expressed in fiber development and involved in response to high-salinity and heavy metal stresses. Physiol Plantarum. 2001;141(1):71–83.
Article
Google Scholar
de Jesús-Pires C, Ferreira-Neto JRC, Pacifico Bezerra-Neto J, Kido EA, de Oliveira Silva RL, Pandolfi V, et al. Plant thaumatin-like proteins: function, evolution and biotechnological applications. Curr Protein Pep Sc. 2020;21(16):36–51. https://doi.org/10.2174/1389203720666190318164905.
Article
CAS
Google Scholar
Li L, Xu X, Chen C, Shen Z. Genome-wide characterization and overexpression analysis of the Germin-like protein family in rice and Arabidopsis. Int J Mol Sci. 2016;17(10):1622. https://doi.org/10.3390/ijms17101622.
Article
CAS
PubMed Central
Google Scholar
Gabrišova D, Klubicova K, Danchenko M, Gomory D, Berezhna VV, Skultety L, et al. Do cupins have a function beyond being seed storage proteins? Front Plant Sci. 2016;6:1–9.
Article
Google Scholar
Kirsch R, Vurmaz E, Schaefer C, Eberl F, Sporer T, Haeger W, et al. Plants use identical inhibitors to protect their cell wall pectin against microbes and insects. Ecol Evol. 2020;10(8):3814–24. https://doi.org/10.1002/ece3.6180.
Article
PubMed
PubMed Central
Google Scholar
Zhao Y, Botella MA, Subramanian L, Niu X, Nielsen SS, Bressan RA, et al. Two wound-inducible soybean cysteine proteinase inhibitors have greater insect digestive proteinase inhibitory activities than a constitutive homolog. Plant Physiol. 1996;111(4):1299–306. https://doi.org/10.1104/pp.111.4.1299.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ryan C. Protease inhibitors in plants: genes for improving defenses against insects and pathogens. Annu Rev Phytopathol. 1990;28(1):425–49. https://doi.org/10.1146/annurev.py.28.090190.002233.
Article
CAS
Google Scholar
Printz B, Morais RDS, Wienkoop S, Sergeant K, Lutts S, Hausman JF, et al. An improved protocol to study the plant cell wall proteome. Front Plant Sci. 2015;6(3):237.
PubMed
PubMed Central
Google Scholar
Liu YL, Chaturvedi P, Fu JL, Cai QQ, Weckwerth W, Yang PF. Induction and quantitative proteomic analysis of cell dedifferentiation during callus formation of Lotus (Nelumbo nucifera Gaertn. Spp. baijianlian). J Proteome. 2016;131:61–70. https://doi.org/10.1016/j.jprot.2015.10.010.
Article
CAS
Google Scholar
Yang P, Li X, Wang X, Chen H, Chen F, Shen S. Proteomic analysis of rice (Oryza sativa) seeds during germination. Proteomics. 2007;7(18):3358–68. https://doi.org/10.1002/pmic.200700207.
Article
CAS
PubMed
Google Scholar
Wei CL, Yang H, Wang SB, Zhao J, Liu C, Gao LP, et al. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. P Natl Aca Sci USA. 2018;115(18):E4151–8. https://doi.org/10.1073/pnas.1719622115.
Article
CAS
Google Scholar
San Clemente H, Jamet E. WallProtDB, a database resource for plant cell wall proteomics. Plant Methods. 2015;11(1):2. https://doi.org/10.1186/s13007-015-0045-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 2009;37(Database):D233–8. https://doi.org/10.1093/nar/gkn663.
Article
CAS
PubMed
Google Scholar
Almagro AJJ, Tsirigos KD, Sønderby CK, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol. 2019;37(4):420–3. https://doi.org/10.1038/s41587-019-0036-z.
Article
CAS
Google Scholar
Moller S, Croning MDR, Apweiler R. Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics. 2001;17(7):646–53. https://doi.org/10.1093/bioinformatics/17.7.646.
Article
CAS
PubMed
Google Scholar
Emanuelsson O, Nielsen H, Brunak S, von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol. 2000;300(4):1005–16. https://doi.org/10.1006/jmbi.2000.3903.
Article
CAS
PubMed
Google Scholar
Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, et al. WoLF PSRT: protein localization predictor. Nucleic Acids Res. 2007;35(Web Server issue):W585–7.
Article
Google Scholar
Goldberg T, Hecht M, Hamp T, Karl T, Yachdav G, Ahmed N, et al. LocTree3 prediction of localization. Nucleic Acids Res. 2014;42(Web Server issue):W350–5.
Article
CAS
Google Scholar
Chou KC, Shen HB. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS One. 2010;5(6):e11335. https://doi.org/10.1371/journal.pone.0011335.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sigrist CJA, Cerutti L, Hulo N, Gattiker A, Falquet L, Pagni M, et al. PROSITE: a documented database using patterns and profiles as motif descriptors. Brief Bioinform. 2002;3(3):265–74. https://doi.org/10.1093/bib/3.3.265.
Article
CAS
PubMed
Google Scholar