Wang YS, Gao LP, Shan Y, Liu YJ, Tian YW, Xia T. Influence of shade on flavonoid biosynthesis in tea (Camellia sinensis (L.) O.Kuntze). Sci Hortic. 2012;141:7–16.
Article
CAS
Google Scholar
Janendra WA, DeCostal M, Mohotti AJ. Ecophysiology of tea. Braz J Plant Physiol. 2007;19:299–332.
Article
Google Scholar
Liebman M, Dyck E. Crop rotation and intercropping strategies for weed management. Ecol Appl. 1993;3:92–122.
Article
PubMed
Google Scholar
Singh A, Weisser WW, Hanna R, Houmgny R, Zytynska SE. Reduce pests, enhance production, benefits of intercropping at high densities for okra farmers in Cameroon. Pest Manag Sci. 2017;73:2017–27.
Article
CAS
PubMed
Google Scholar
Zhi XY, Han YC, Xing FF, Lei YP, Wang GP, Feng L, Yang BF, Wang ZB, Li XF, Xiong SW, Fan ZY, Li YB. How do cotton light interception and carbohydrate partitioning respond to cropping systems including monoculture, intercropping with wheat, and direct-seeding after wheat? PLoS One. 2019;14:e0217243.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dai J, Qiu W, Wang N, Nakanishi H, Zuo Y. Comparative transcriptomic analysis of the roots of intercropped peanut and maize reveals novel insights into peanut iron nutrition. Plant Physiol Biochem. 2018;127:516–24.
Article
CAS
PubMed
Google Scholar
Craswell ET, Sajjapongse A, Howlett DJB, Dowling AJ. Agroforestry in the management of sloping lands in Asia and the Pacific. Agrofor Syst. 1998;53:121–37.
Google Scholar
Chauhan SK, Gupta N, Walia R, Yadav S, Chauhan R, Mangat PS. Biomass and carbon sequestration potential of poplar-wheat inter-cropping system in irrigated agro-ecosystem in India. J Agr Sci Technol. 2011;1:575–86.
Google Scholar
Xue J, Tang R. Practices and investigations of tree-tea intercropping systems in China. Int Tree Crops J. 1998;9(3):179–85.
Article
Google Scholar
Guo Z, Zhang Y, Deegen P, Uibrig H. Economic analyses of rubber and tea plantations and rubber-tea intercropping in Hainan, China. Agroforest Syst. 2006;66:117–27.
Article
Google Scholar
Li Q, Shi X, Zhao Q, Cui Y, Ouyang J, Xu F. Effect of cooking methods on nutritional quality and volatile compounds of Chinese chestnut (Castanea mollissima Blume). Food Chem. 2016;201:80–6.
Article
CAS
PubMed
Google Scholar
Wang H, Wu L, Zhou M. Influence of chestnut-tea tree intercropping to growth of tea trees and tea quality in northern China. J Agrometeorol. 2005;26(2):139–41.
Google Scholar
Wan Y, Liu G, Zhou M. Study on major ecological factors of chestnut-tea intercrop garden. Nonwood Forest Res. 2009;27(3):57–60.
Google Scholar
Ma YH, Fu S, Zhang X, Zhao K, Chen HYH. Intercropping improves soil nutrient availability, soil enzyme activity and tea quantity and quality. Appl Soil Ecol. 2017;119:171–8.
Article
Google Scholar
Yu LH, Liu GH, Chen SJ, Wang L, Shi L. Basis characteristics of tea root system under the condition of chestnut and tea intercropping. Nonwood Forest Res. 2006;24(3):6–10.
Google Scholar
Das PR, Kim Y, Hong SJ, Eun JB. Profiling of volatile and non-phenolic metabolites—amino acids, organic acids, and sugars of green tea extracts obtained by different extraction techniques. Food Chem. 2019;296:69–77.
Article
CAS
PubMed
Google Scholar
Saeed M, El-Hack MEA, Alagawany M, Naveed M, Arain MA, Arif M. Phytochemistry, modes of action and beneficial health applications of green tea (Camellia sinensis) in humans and animals. Int J Pharmacol. 2017;13(7):698–708.
Article
CAS
Google Scholar
Yu ZM, Yang Z. Understanding different regulatory mechanisms of proteinaceous and non-proteinaceous amino acid formation in tea (Camellia sinensis) provides new insights into the safe and effective alteration of tea flavor and function. Crit Rev Food Sci Nutr. 2020;60:844–58.
Article
CAS
PubMed
Google Scholar
Kellogg JJ, Graf TN, Paine MF, McCune JS, Kvalheim OM, Oberlies NH, Cech NB. Comparison of metabolomics approaches for evaluating the variability of complex botanical preparations: green tea (Camellia sinensis) as a case study. J Nat Prod. 2017;80(5):1457–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeng CZ, Lin HY, Liu ZX, Liu ZH. Analysis of young shoots of ‘Anji Baicha’(Camellia sinensis) at three developmental stages using nontargeted LC-MS-based metabolomics. J Food Sci. 2019;84:1746–57.
Article
CAS
PubMed
Google Scholar
Zhu B, Li L, Wei H, Zhou W, Zhou W, Li F, Lin P, Sheng J, Wang Q, Yan C, Cheng Y. A simultaneously quantitative profiling method for 40 endogenous amino acids and derivatives in cell lines using hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry. Talanta. 2020;207:120256.
Article
CAS
PubMed
Google Scholar
Li NN, Lu JL, Li QS, Zheng XQ, Wang XC, Wang L, Wang YC, Ding CQ, Liang YR, Yang YJ. Dissection of chemical composition and associated gene expression in the pigment-deficient tea cultivar ‘Xiaoxueya’ reveals an albino phenotype and metabolite formation. Front Plant Sci. 2019;10:1543.
Article
PubMed
PubMed Central
Google Scholar
Dursun A, Güler Z, Şekerli YE. Characterization of volatile compounds and organic acids in ultra-high-temperature milk packaged in tetra brik cartons. Int J Food Prop. 2017;20:1511–21.
Article
CAS
Google Scholar
Fang R, Redfern SP, Kirkup D. Variation of theanine, phenolic, and methylxanthine compounds in 21 cultivars of Camellia sinensis harvested in different seasons. Food Chem. 2017;220:517–26.
Article
CAS
PubMed
Google Scholar
Liao J, Wu XY, Xing ZQ, Li QH, Duan Y, Fang WP, Zhu XJ. γ-Aminobutyric acid (GABA) accumulation in tea (Camellia sinensis L.) through the GABA shunt and polyamine degradation pathways under anoxia. J Agric Food Chem. 2017;65:3013–8.
Article
CAS
PubMed
Google Scholar
Belitz HD, Chen W, Jugel H, Treleano R, Wieser H, Gasteiger J, Marsili M. Sweet and bitter compounds, structure and taste relationship. Food Taste Chem. 1979;4:93–131.
Article
CAS
Google Scholar
Ashihara H, Crozier A. Biosynthesis and metabolism of caffeine and related purine alkaloids in plants. Adv Bot Res. 1999;30:117–205.
Article
CAS
Google Scholar
Mazzafera P. Catabolism of caffeine in plants and microorganisms. Front Biosci. 2004;9:1348–59.
Article
CAS
PubMed
Google Scholar
Mohanpuria P, Kumar V, Joshi R, Gulati A, Ahuja PS, Yadav SK. Caffeine biosynthesis and degradation in tea [Camellia sinensis (L.) O. Kuntze] is under developmental and seasonal regulation. Mol Biotechnol. 2009;43:104–11.
Article
CAS
PubMed
Google Scholar
Zsizsik BK, Hardeland R. Formation of kynurenic and xanthurenic acids from kynurenine and 3-hydroxykynurenine in the dinoflagellate Lingulodinium polyedrum, role of a novel, oxidative pathway. Com. Biochem Physiol Part C Toxicol Pharmacol. 2002;133:383–92.
Article
CAS
Google Scholar
Muchuweti M, Zenda G, Ndhlala AR, Kasiyamhuru A. Sugars, organic acid and phenolic compounds of Ziziphus mauritiana fruit. Eur Food Res Technol. 2005;221:570–4.
Article
CAS
Google Scholar
Ali MB, Mhiri S, Mezghani M, Bejara S. Purification and sequence analysis of the atypical maltohexaose-forming α-amylase of the B. stearothermophilus US100. Enzym Microb Technol. 2001;28(6):537–42.
Article
Google Scholar
Robyt JF. Sweetness. In: Essentials of Carbohydrate Chemistry; 1998. p. 142–56.
Chapter
Google Scholar
Derollez P, Guinet Y, Affouard F, Danède F, Carpentier L, Hédoux A. Structure determination of l-arabinitol by powder X-ray diffraction. Acta Crystallogr B. 2012;68:407–11.
Article
CAS
PubMed
Google Scholar
Van Es AJH. Dietary energy density on using sugar alchohols as replacements for sugars. Proc Nutr Soc. 1991;50(2):383–90.
Article
PubMed
Google Scholar
Gales MA, Nguyen TM. Sorbitol compared with xylitol in prevention of dental caries. Ann Pharmacother. 2000;34:98–100.
Article
CAS
PubMed
Google Scholar
Saotome Y, Imai M. Supercritical carbon dioxide extraction of apigenin from parsley leaves pre-treated to maximize yield. Food Sci Technol Res. 2018;24(1):63–73.
Article
CAS
Google Scholar
Dong F, Yang Z, Baldermann S, Kajitani Y, Ota S, Kasug H, Imazeki Y, Ohnishi T, Watanabe N. Characterization of l-phenylalanine metabolism to acetophenone and 1-phenylethanol in the flowers of Camellia sinensis using stable isotope labeling. J Plant Physiol. 2012;169(3):217–25.
Article
CAS
PubMed
Google Scholar
Ekborg-Ott KH, Taylor A, Armstrong DW. Varietal differences in the total and enantiomeric composition of theanine in tea. J Agric Food Chem. 1997;45:353–63.
Article
CAS
Google Scholar
Narukawa M, Morita K, Hayashi Y. L-Theanine elicits an umami taste with inosine 5′-monophosphate. Biosci Biotechnol Biochem. 2008;72(11):3015–7.
Article
CAS
PubMed
Google Scholar
Lee LS, Kim SH, Kim YB, Kim YC. Quantitative analysis of major constituents in green tea with different plucking periods and their antioxidant activity. Molecules. 2014;19:9173–86.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lean MEJ, Hankey CR. Aspartame and its effects on health. BMJ. 2004;329:755.
Article
PubMed
PubMed Central
Google Scholar
Ogawa T, Nakamura T, Tsuji E, Miyanaga Y, Nakagawa H, Hirabayashi H, Uchida T. The combination effect of L-arginine and NaCl on bitterness suppression of amino acid solutions. Chem Pharm Bull. 2004;52:172–7.
Article
CAS
Google Scholar
Miyashita T, Etoh H. Improvement of the bitterness and astringency of green tea by sub-critical water extraction. Food Sci Technol Res. 2013;19(3):471–8.
Article
CAS
Google Scholar
Moya-Garcia AA, Medina MA, Sánchez-Jiménez F. Mammalian histidine decarboxylase: from structure to function. Bioessays. 2005;27(1):57–63.
Article
CAS
PubMed
Google Scholar
Wu GY. Amino acids, metabolism, functions, and nutrition. Amino Acids. 2009;37:1–17.
Article
PubMed
CAS
Google Scholar
Shao H, Chu L, Shao M, Jaleel CA, Mi H. Higher plant antioxidants and redox signaling under environmental stresses. C R Biol. 2008;331(6):433–41.
Article
CAS
PubMed
Google Scholar
Devasagayam TPA, Tilak JC, Boloor KK, Sane KS, Ghaskadbi SS, Lele RD. Free radicals and antioxidants in human health: current status and future prospects. J Assoc Physicians India. 2004;52:794–804.
CAS
PubMed
Google Scholar
Ben-Ari Y, Khalilov I, Kahle KT, Cherubini E. The GABA excitatory/inhibitory shift in brain maturation and neurological disorders. Neuroscientist. 2012;18:467–86.
Article
PubMed
CAS
Google Scholar
Dhakal R, Bajpai VK, Baek KH. Production of GABA (γ-aminobutyric acid) by microorganisms, a review. Braz J Microbiol. 2012;43(4):1230–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barnes RL. Formation of allantoin and allantoic acid from adenine in leaves of Acer saccharinum L. Nature. 1959;184:1944.
Article
CAS
Google Scholar
Perry JJ, Fiore MC. A comprehensive review of maple sap microbiota and its effect on maple syrup quality. Food Rev Int. 2020. https://doi.org/10.1080/87559129.2020.1788579.
Wei H, Leeds P, Chen RW, Wei W, Leng Y, Bredesen DE, Chuang DM. Neuronal apoptosis induced by pharmacological concentrations of 3-hydroxykynurenine, characterization and protection by dantrolene and Bcl-2 overexpression. J Neurochem. 2000;75:81–90.
Article
CAS
PubMed
Google Scholar
Fazio F, Lionetto L, Curto M, Lacovelli L, Copeland CS, Neale SA, Bruno V, Battaglia G, Salt TE, Nicoletti F. Cinnabarinic acid and xanthurenic acid: two kynurenine metabolites that interact with metabotropic glutamate receptors. Neuropharmacology. 2017;112:365–72.
Article
CAS
PubMed
Google Scholar
Lopez-Burrillo S, Tan DX, Mayo JC, Sains RM, Manchester LC, Reiter RJ. Melatonin, xanthurenic acid, resveratrol, EGCG, vitamin C and ɑ-lipoic acid differentially reduce oxidative DNA damage induced by Fenton reagents: a study of their individual and synergistic actions. J Pineal Res. 2003;34:269–77.
Article
Google Scholar
Yilmaz C, Özdemir F, Gökmen V. Investigation of free amino acids, bioactive and neuroactive compounds in different types of tea and effect of black tea processing. LWT. 2020;117:108655.
Article
CAS
Google Scholar
Hucker B, Varelis P. Thermal decarboxylation of 2-furoic acid and its implication for the formation of furan in foods. Food Chem. 2011;126:1512–3.
Article
CAS
Google Scholar
Sanderson GW, Selvendran RR. The organic acids in tea plants. A study of the non-volatile organic acids separated on silica gel. J Sci Food Agric. 1965;16(5):251–8.
Article
CAS
Google Scholar
Chaturvedula VSP, Prakash I. The aroma, taste, color and bioactive constituents of tea. J Med Plants Res. 2011;5(11):2110–24.
CAS
Google Scholar
Rogers WJ, Michaux S, Bastin M, Bucheli P. Changes to the content of sugars, sugar alcohols, myo-inositol, carboxylic acids and inorganic anions in developing grains from different varieties of Robusta (Coffea canephora) and Arabica (C. arabica) coffees. Plant Sci. 1999;149(2):115–23.
Article
CAS
Google Scholar
Belitz HD, Grosch W, Schieberle P. Sugars, sugar alcohols and honey. In: Food Chemistry; 2004. p. 862–91.
Chapter
Google Scholar
Xu YQ, Chen SQ, Yuan HB, Tang P, Yin JF. Analysis of cream formation in green tea concentrates with different solid concentrations. Food Sci Technol. 2012;49(3):362–7.
CAS
Google Scholar
Giraud MF, Naismith JH. The rhamnose pathway. Curr Opin Struct Biol. 2000;10(6):687–96.
Article
CAS
PubMed
Google Scholar
Horowitz RM, Gentili B. Taste and structure in phenolic glycosides. J Agric Food Chem. 1969;17:696–700.
Article
CAS
Google Scholar
Zeng LT, Zhou Y, Fu XM, Liao YY, Yuan YF, Jia YX, Dong F, Yang ZY. Biosynthesis of jasmine lactone in tea (Camellia sinensis) leaves and its formation in response to multiple stresses. J Agric Food Chem. 2018;66:3899–909.
Article
CAS
PubMed
Google Scholar
Wang X, Wang D, Li J, Ye C, Kubota K. Aroma characteristics of cocoa tea (Camellia ptilophylla Chang). Biosci Biotechnol Biochem. 2010;74(5):946–53.
Article
CAS
PubMed
Google Scholar
Chung TY, Kuo PC, Liao ZH, Shih YE, Yang ML, Cheng ML, Wu CC, Tzen JTC. Analysis of lipophilic compounds of tea coated on the surface of clay teapots. J Food Drug Anal. 2015;23(1):71–81.
Article
CAS
PubMed
Google Scholar
Sales-Campos H, Reis de Souza P, Crema Peghini B, Santana da Silva J, Ribeiro Cardoso C. An overview of the modulatory effects of oleic acid in health and disease. Mini-Rev Med Chem. 2013;13(2):201–10.
CAS
PubMed
Google Scholar
Pękal A, Biesaga M, Pyrzynska K. Trace metals and flavonoids in different types of tea. Food Sci Biotechnol. 2013;22:925–30.
Article
CAS
Google Scholar
Oyama K, Kondo T. Total synthesis of apigenin 7,4′-di-O-β-glucopyranoside, a component of blue flower pigment of Salvia patens, and seven chiral analogues. Tetrahedron. 2004;60(9):2025–34.
Article
CAS
Google Scholar
Sánchez-Pérez R, Howad W, Garcia-Mas J, Arús P, Martínez-Gómez P, Dicenta F. Molecular markers for kernel bitterness in almond. Tree Genet Genomes. 2010;6:237–45.
Article
Google Scholar
Seelinger G, Merfort I, Schempp CM. Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin, a flavone from the Dyer’s weld Reseda luteola L. Planta Med. 2008;74:1667–77.
Article
CAS
PubMed
Google Scholar
Chen L, Zhuang HY. Cancer preventive mechanisms of the green tea polyphenol (−)-epigallocatechin-3-gallate. Molecules. 2007;12:946–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Siddique YH, Beg T, Afzal M. Antigenotoxic effect of apigenin against anti-cancerous drugs. Toxicol Vitro. 2008;22(3):625–31.
Article
CAS
Google Scholar
Moridani MY, Pourahmad J, Bui H, Siraki A, O’Brien PJ. Dietary flavonoid iron complexes as cytoprotective superoxide radical scavengers. Free Radical Biol Med. 2003;34(2):243–53.
Article
CAS
Google Scholar
Ferreyra MLF, Rius SP, Casati P. Flavonoids, biosynthesis, biological functions, and biotechnological applications. Front Plant Sci. 2012;3:222.
Google Scholar
Liu LL, Li YY, She GB, Zhang XC, Jordan B, Chen Q, Zhao J, Wan XC. Metabolite profiling and transcriptomic analyses reveal an essential role of UVR8-mediated signal transduction pathway in regulating flavonoid biosynthesis in tea plants (Camellia sinensis) in response to shading. BMC Plant Biol. 2018;18:233.
Article
CAS
PubMed
PubMed Central
Google Scholar