Khan MS, Zaidi A, Wani PA. Role of phosphate-solubilizing microorganisms in sustainable agriculture - a review. Agron Sustain Dev. 2007;27(1):29–43.
Article
Google Scholar
Ray DK, Mueller ND, West PC, Foley JA. Yield trends are insufficient to double global crop production by 2050. PLoS One. 2013;8(6):e66428.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jez JM, Lee SG, Sherp AM. The next green movement: plant biology for the environment and sustainability. Science. 2016;353(6305):1241–4.
Article
CAS
PubMed
Google Scholar
Reinhardt D, Kuhlemeier C. Plant architecture. EMBO Rep. 2002;3(9):846–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang B, Steven MS, Li JY. Genetic regulation of shoot architecture. Annu Rev Plant Biol. 2018;69(1):437–68.
Article
CAS
PubMed
Google Scholar
Chairi F, Sanchez-Bragado R, Serret MD, Aparicio N, Nieto-Taladriz MT, Luis AJ. Agronomic and physiological traits related to the genetic advance of semi-dwarf durum wheat: the case of Spain. Plant Sci. 2019;295:110210.
Chen X, Xu P, Zhou J, Tao D, Yu D. Mapping and breeding value evaluation of a semi-dominant semi-dwarf gene in upland rice. Plant Divers. 2018;40:238–44.
Article
PubMed
PubMed Central
Google Scholar
Cooper RL, Martin RJ, St. Martin SK, Calip-DuBois A, Fioritto RJ, Schmitthenner AF. Registration of ‘Charleston’ soybean. Crop Sci. 1995;35(2):593.
Article
Google Scholar
Cooper RL, Mendiola T, St. Martin SK, Fioritto RJ, Dorrance AE. Registration of ‘apex’ soybean. Crop Sci. 2003;43(4):1563–4.
Article
Google Scholar
Su C. QTL mapping, validation and candidate genes analysis for plant height in maize. Indian J Genet Pl Br. 2018;78(4):443–53.
CAS
Google Scholar
Hedden P. The genes of the green revolution. Trends Genet. 2003;19(1):5–9.
Article
CAS
PubMed
Google Scholar
Khush GS. Green revolution: the way forward. Nat Rev Genet. 2001;2(10):815–22.
Article
CAS
PubMed
Google Scholar
Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, et al. ‘Green revolution’ genes encode mutant gibberellins response modulators. Nature. 1999;400(6741):256–61.
Article
CAS
PubMed
Google Scholar
Chen Y, Nelson RL. Variation in early plant height in wild soybean. Crop Sci. 2006;46(2):865–9.
Article
Google Scholar
Huang ZW, Wang W, Xu XJ, Wen ZX, Li HC, Li JY, et al. Relationship of dynamic plant height and its relative growth rate with yield using recombinant inbred lines of soybean. Acta Agron Sin. 2011;37(3):559–62.
Article
Google Scholar
Josie J, Alcivar A, Rainho J, Kassem MA. Genomic regions containing QTL for plant height, internodes length, and flower color in soybean [Glycine max (L.) Merr.]. Bios. 2007;78(4):119–26.
Article
Google Scholar
Thompson J, Bernard RL, Nelson RL. A third allele at the soybean dtl locus. Crop Sci. 1997;37(3):757–62.
Article
Google Scholar
Wang Y, Cheng LR, Sun Y, Zhou Z, Zhu LH, Xu ZJ, et al. Effect of genetic background on QTLs for heading date and plant height and interactions between QTL and environment using reciprocal introgression lines in rice. Acta Agron Sin. 2009;35(8):1386–94.
CAS
Google Scholar
Zhang J, Song Q, Cregan PB, Nelson RL, Wang X, Wu J, et al. Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean (Glycine max) germplasm. BMC Genomics. 2015;16:217.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao Y, Li SG, He XH, Chang FG, Kong JJ, et al. Mapping QTLs for plant height and flowering time in a Chinese summer planting soybean RIL population. Euphytica. 2017;213:39.
Article
Google Scholar
Miedaner T, Herter CP, Ebmeyer E, Kollers S, Korzun V, Buerstmayr H. Use of non-adapted quantitative trait loci for increasing Fusarium head blight resistance for breeding semi-dwarf wheat. Plant Breed. 2019;138:140–7.
Article
CAS
Google Scholar
Srivastava D, Shamim M, Mishra A, Yadav P, Kumar D, Pandey P, et al. Introgression of semi-dwarf gene in Kalanamak rice using marker-assisted selection breeding. Curr Sci India. 2019;116(4):597–603.
Article
CAS
Google Scholar
Grover G, Sharma A, Gill HS, Srivastava P, Bains NS. Rht8 gene as an alternate dwarfing gene in elite Indian spring wheat cultivars. PLoS One. 2018;13(6):e0199330.
Article
PubMed
PubMed Central
Google Scholar
Li Z, Zhang X, Zhao Y, Li Y, Zhang G, Peng Z, et al. Enhancing auxin accumulation in maize root tips improves root growth and dwarfs plant height. Plant Biotechnol J. 2018;16:86–99.
Article
CAS
PubMed
Google Scholar
Wei X, Xu J, Guo H, Jiang L, Chen S, Yu C, et al. DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol. 2010;153(4):1747–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mori M, Nomura T, Ooka H, Ishizaka M, Yokota T, Sugimoto K, et al. Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis. Plant Physiol. 2002;130(3):1152–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu W, Wu C, Fu Y, Hu G, Si H, Zhu L, et al. Identification and characterization of HTD2: a novel gene negatively regulating tiller bud outgrowth in rice. Planta. 2009;230(4):649–58.
Article
CAS
PubMed
Google Scholar
Lu Z, Yu H, Xiong G, Wang J, Jiao Y, Liu G, et al. Genome-wide binding analysis of the transcription activator IDEAL PLANT ARCHITECTURE1 reveals a complex network regulating Rice Plant ARCHITECTURE. Plant Cell. 2013;25(10):3743–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang YX, Yu CS, Lin JZ, Liu J, Liu B, Wang J, et al. OsMPH1 regulates plant height and improves grain yield in rice. PLoS One. 2017;12(7):1–17.
Article
Google Scholar
Zhang YH, Bian XF, Zhang SB, Ling J, Wang YJ, Wei XY, et al. Identification of a novel gain-of-function mutant allele, slr1-d5, of rice DELLA protein. J Integr Agr. 2015;15(7):1441–8.
Article
Google Scholar
Liu BM, Wu YJ, Fu XD, Qian Q. Characterizations and molecular mapping of a novel dominant semi-dwarf gene Sdd(t) in rice (Oryza sativa). Plant Breed. 2008;127(2):125–30.
Article
CAS
Google Scholar
Bernard RL. Two genes affecting stem termination in soybeans. Crop Sci. 1972;12(2):235–9.
Article
Google Scholar
Liu B, Watanabe S, Uchiyama T, Kong F, Kanazawa A, Xia Z, et al. The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1. Plant Physiol. 2010;153(1):198–210.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ping J, Liu Y, Sun L, Zhao M, Li Y, She M, et al. Dt2 is a gain-of-function MADS-domain factor gene that specifies semideterminacy in soybean. Plant Cell. 2014;26(7):2831–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ting CL. Genetic studies on the wild and cultivated soybeans. J Am Soc Agronomy. 1946;38(5):381–93.
Article
Google Scholar
Osiru MO, Olanya OM, Adipala E, Kapinga R, Lemaga B. Yield stability analysis of Ipomoea batatus L. cultivars in diverse environments. Aust J Crop Sci. 2009;3(4):213–20.
Google Scholar
Went FW. The effect of temperature on plant growth. Annu Rev Plant Physiol Plant Mol Bioi. 1953;4(1):347–62.
Article
Google Scholar
Zhang SR, Wang H, Wang Z, Ren Y, Niu L, Liu J, et al. Photoperiodism dynamics during the domestication and improvement of soybean. Sci China Life Sci. 2017;60(12):1416–27.
Article
PubMed
Google Scholar
Alliprandini LF, Abatti C, Bertagnolli PF, Cavassim JE, Gabe HL, Kurek A, et al. Understanding soybean maturity groups in Brazil: environment, cultivar classification, and stability. Crop Sci. 2009;49(3):801–8.
Article
Google Scholar
Gupta S, Bhatia VS, Kumawat G, Thakur D, Singh G, Tripathi R, et al. Genetic analyses for deciphering the status and role of photoperiodic and maturity genes in major Indian soybean cultivars. J Genet. 2017;96(1):147–54.
Article
CAS
PubMed
Google Scholar
Abrahão GM, Costa MH. Evolution of rain and photoperiod limitations on the soybean growing season in Brazil: The rise (and possible fall) of double-cropping systems. Agr Forest Meteorol. 2018;256–257:32–45.
Article
Google Scholar
Cober ER, Curtis DF, Stewart DW, Morrison MJ. Quantifying the effects of photoperiod, temperature and daily irradiance on flowering time of soybean isolines. Plants. 2014;3(4):476–97.
Article
PubMed
PubMed Central
Google Scholar
Li XM, Fang C, Xu ML, Zhang FG, Lu SJ, Nan HY, et al. Quantitative trait locus mapping of soybean maturity gene E6. Crop Sci. 2017;57(5):2547–54.
Article
CAS
Google Scholar
Lu S, Zhao X, Hu Y, Liu S, Nan H, Li X, et al. Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield. Nat Genet. 2017;49(5):773–9.
Article
CAS
PubMed
Google Scholar
Watanabe S, Xia Z, Hideshima R, Tsubokura Y, Sato S, Yamanaka N, et al. A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics. 2011;188(2):395–407.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu M, Xu Z, Liu B, Kong F, Tsubokura Y, Watanabe S, et al. Genetic variation in four maturity genes affects photoperiod insensitivity and PHYA-regulated post-flowering responses of soybean. BMC Plant Biol. 2013;13:91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu M, Yamagishi N, Zhao C, Takeshima R, Kasai M, Watanabe S, et al. The soybean-specific maturity gene E1 family of floral repressors controls night-break responses through down-regulation of FLOWERING LOCUS T orthologs. Plant Physiol Bioch. 2015;168(4):1735–46.
Article
CAS
Google Scholar
Zhao C, Takeshima R, Zhu J, Xu M, Sato M, Watanabe S, et al. A recessive allele for delayed FLOWERING at the soybean maturity LOCUS E9 is a leaky allele of FT2a, a FLOWERING LOCUS T ortholog. BMC Plant Biol. 2016;16:20.
Article
PubMed
PubMed Central
Google Scholar
Zhao L, Li M, Xu C, Yang X, Li D, Zhao X, et al. Natural variation in GmGBP1 promoter affects photoperiod control of flowering time and maturity in soybean. Plant J. 2018;96(1):147–62.
Article
CAS
PubMed
Google Scholar
Malik MNA, Edwards DG, Evenson JP. Effects of flower bud removal and nitrogen supply on growth and development of cotton (Gossypium hirsutum L.). Aust J Plant Physiol. 1981;8(3):285–91.
Google Scholar
Xiong WB, Xu FY, Wang XY. Effect of different nitrogen application rate on rice stem characteristics. Agric Biotechnol. 2018;7(5):204–7.
CAS
Google Scholar
Moura WM, Soares YJ, Amaral Junior AT, Gravina GA, Barili LD, Vieira HD. Biometric analysis of arabica coffee grown in low potassium nutrient solution under greenhouse conditions. Genet Mol Res. 2016;15(3):gmr.15038753.
Article
Google Scholar
Sun JW, Li N, Wang CY, Zhao JH, Zhang SW, Jiang MJ, et al. Effects of transplanting methods and potassium rates on lodging resistance of hybrid rice. J Nucl Agric Sci. 2017;31(12):2408–17.
Google Scholar
Lee S, Jun TH, Michel AP, Rouf Mian MA. SNP markers linked to QTL conditioning plant height, lodging, and maturity in soybean. Euphytica. 2014;203(3):521–32.
Article
Google Scholar
Zhang X, Wang W, Guo N, Zhang Y, Bu Y, Zhao J, et al. Combining QTL-seq and linkage mapping to fine map a wild soybean allele characteristic of greater plant height. BMC Genomics. 2018;19(1):1–12.
Google Scholar
Terzić D, Popović V, Tatić M, Vasileva V, Đekić V, Ugrenović, et al. Soybean area, yield and production in world. Eco-Conference. 2018;10:135–44.
Google Scholar
Wang YS, Gai JY. Study on the ecological regions of soybean in China II. Ecological environment and representative varieties. Chin J Appl Ecol. 2002;13(1):71–5.
Google Scholar
Maki T, Nomachi M, Yoshida S, Ezawa T. Plant symbiotic microorganisms in acid sulfate soil: significance in the growth of pioneer plants. Plant Soil. 2008;310(1–2):55–65.
Article
CAS
Google Scholar
Xu X, He P, Pampolino MF, Li Y, Liu S, Xie J, et al. Narrowing yield gaps and increasing nutrient use efficiencies using the nutrient expert system for maize in Northeast China. Field Crop Res. 2016;194:75–82.
Article
Google Scholar
Zhang XC, Chen H, Huang SL, Yin XW, Du CZ, Zhang JJ. Optimal combination of nitrogen fertilizer and spring soybean varieties in Chongqing. Soybean Sci. 2012;31(2):255–8.
CAS
Google Scholar
Zhao J, Fu JB, Liao H, He Y, Nian H, Hu YM, et al. Characterization of root architecture in an applied core collection for phosphorus efficiency of soybean germplasm. Chin Sci Bull. 2004;49(15):1611–20.
Article
CAS
Google Scholar
Yang Q, Yang YQ, Xu RN, Lv HY, Liao H. Genetic analysis and mapping of QTLs for soybean biological nitrogen fixation traits under varied field conditions. Front Plant Sci. 2019;10:75.
Article
PubMed
PubMed Central
Google Scholar
Eskandari M, Cober ER, Rajcan I. Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield. Theor Appl Genet. 2013;126(6):1677–87.
Article
CAS
PubMed
Google Scholar
Gai JY, Wang YJ, Wu XL, Chen SY. A comparative study on segregation analysis and QTL mapping of quantitative traits in plants-with a case in soybean. Front Agr China. 2007;1(1):1–7.
Article
Google Scholar
Lark KG, Chase K, Adler F, Mansur LM, Orf JH. Interactions between quantitative trait loci in soybean in which trait variation at one locus is conditional upon a specific allele at another. P Natl Acad Sci USA. 1995;92(10):4656–60.
Article
CAS
Google Scholar
Lee SH, Bailey MA, Mian MAR, Shipe ER, Ashley DA, Parrott WA, et al. Identification of quantitative trait loci for plant height, lodging, and maturity in a soybean population segregating for growth habit. Theor Appl Genet. 1996;92(5):516–23.
Article
CAS
PubMed
Google Scholar
Orf JH, Chase K, Jarvik T, Mansur LM, Cregan PB, Adler FR, et al. Genetics of soybean agronomic traits: I. comparison of three related recombinant inbred populations. Crop Sci. 1999;39(6):1642–51.
Article
Google Scholar
Pathan SM, Vuong T, Clark K, Lee JD, Shannon JG. Genetic mapping and confirmation of quantitative trait loci for seed protein and oil contents and seed weight in soybean. Crop Sci. 2013;53(3):765–74.
Article
CAS
Google Scholar
Sun DS, Li WB, Zhang ZC, Chen QS, Ning HL, Qiu LJ, et al. Quantitative trait loci analysis for the developmental behavior of soybean (Glycine max L. Merr.). Theor Appl Genet. 2006;112(4):665–73.
Article
CAS
PubMed
Google Scholar
Wang D, Graef GL, Procopiuk AM, Diers BW. Identification of putative QTL that underlie yield in interspecific soybean backcross populations. Theor Appl Genet. 2004;108(3):458–67.
Article
CAS
PubMed
Google Scholar
Yao D, Liu ZZ, Zhang J, Liu SY, Qu J, Guan SY, et al. Analysis of quantitative trait loci for main plant traits in soybean. Genet Mol Res. 2015;14(2):6101–9.
Article
CAS
PubMed
Google Scholar
Lu S, Dong L, Fang C, Liu S, Cheng Q, Kong L, et al. Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication. Nat Genet. 2020;52(4):1–9.
Article
Google Scholar
Takeshima R, Nan HY, Harigai K, Dong LD, Zhu JH, Lu SJ, et al. Functional divergence between soybean FLOWERING LOCUS T orthologues, FT2a and FT5a, in post-flowering stem growth. J Exp Bot. 2019;70(15):3941–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cober ER, Voldeng HD. A new soybean maturity and photoperiod-sensitivity locus linked to E1 and T. Crop Sci. 2001;41:698–701.
Article
Google Scholar
Hao G, Chen X, Pu M. Classification of the Chinese soybean cultivars into maturity groups. Acta Agron Sin. 1992;18(4):275–81.
Google Scholar
Hartwig E. Growth and reproductive characteristics of soybeans [Glycine max (L.) Merr.] grown under short-day conditions. Trop Sci. 1970;12:47–53.
Google Scholar
Wang GX. Ecological classification of the Chinese soybean cultivars. Scientia Agricultura Sinica. 1981;14(03):39–46.
Zhang LX, Kyei-Boahen S, Zhang J, Zhang MH, Freeland TB, Watson CE, et al. Modifications of optimum adaptation zones for soybean maturity groups in the USA. Crop Manage. 2007;6:1.
Article
CAS
Google Scholar
Hatfield JL, Prueger JH. Temperature extremes: effect on plant growth and development. Weather Climate Extremes. 2015;10:4–10.
Article
Google Scholar
Kiss T, Dixon LE, Soltesz A, Banyai J, Mayer M, Balla K, et al. Effects of ambient temperature in association with photoperiod on phenology and on the expressions of major plant developmental genes in wheat (Triticum aestivum L.). Plant Cell Environ. 2017;40(8):1629–42.
Article
CAS
PubMed
Google Scholar
Luan WJ, Chen HZ, Fu YP, Si HM, Peng W, Song SS, et al. The effect of the crosstalk between photoperiod and temperature on the heading-date in rice. PLoS One. 2009;4(6):e5891.
Article
PubMed
PubMed Central
Google Scholar
Tian L, Wang SX, Song XH, Zhang J, Liu P, Chen Z, et al. Long photoperiod affects the maize transition from vegetative to reproductive stages: a proteomic comparison between photoperiod-sensitive inbred line and its recurrent parent. Amino Acids. 2018;50(1):149–61.
Article
CAS
PubMed
Google Scholar
Xia Z, Watanabe S, Yamada T, Tsubokura Y, Nakashima H, Zhai H, et al. Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. P Natl Acad Sci Usa. 2012;109(32):E2155–64.
Article
CAS
Google Scholar
Chen LY, Nan HY, Kong LP, Yue L, Yang H, Zhao QS, et al. Soybean AP1 homologs control flowering time and plant height. J Integr Plant Biol. 2020;00(00):1–12.
Google Scholar
Allen LH, Zhang L, Boote KJ, Hauser BA. Elevated temperature intensity, timing, and duration of exposure affect soybean internode elongation, mainstem node number, and pod number per plant. Crop J. 2018;6(2):148–61.
Article
Google Scholar
Thomas JF, Raper CD Jr. Morphological response of soybeans as governed by photoperiod, temperature, and age at treatment. Bot Gaz. 1977;138(3):321–8.
Article
Google Scholar
Van Schaik PH, Probst AH. Effects of some environmental factors on flower production and reproductive efficiency in soybeans. Agron J. 1958;50(4):192–7.
Article
Google Scholar
Wang XG, Zhao NL, Wei JJ, Dong Z. Case analysis of super-high-yielding soybean variety, Zhonghuang 35. Soybean Sci. 2011;30(6):1051–3.
Google Scholar
Peoples MB, Brockwell J, Herridge DF, Rochester IJ, Alves BJR, Urquiaga S, et al. The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis. 2009;48(1/3):1–17.
Article
CAS
Google Scholar
Hao T, Zhu Q, Zeng M, Shen J, Shi X, Liu X, et al. Quantification of the contribution of nitrogen fertilization and crop harvesting to soil acidification in a wheat-maize double cropping system. Plant Soil. 2019;434(1–2):167–84.
Article
CAS
Google Scholar
Lin H, Jing CM, Wang JH. The Influence of long-term fertilization on soil acidification. Adv Mater Res. 2014;955–9:3552–5.
Article
Google Scholar
Schroder JL, Zhang H, Girma K, Raun WR, Penn CJ, Payton ME. Soil acidification from long-term use of nitrogen fertilizers on winter wheat. Soil Sci Soc Am J. 2011;75(3):957–64.
Article
CAS
Google Scholar
Yang YQ, Tong Y, Li XX, He Y, Xu RN, Liu D, et al. Genetic analysis and fine mapping of phosphorus efficiency locus 1 (PE1) in soybean. Theor Appl Genet. 2019;132:2847–58.
Article
CAS
PubMed
Google Scholar
Chen LY, Qin L, Zhou LL, Chen ZC, Sun LL, Wang WF, et al. A nodule-localized phosphate transporter GmPT7 plays an important role in enhancing symbiotic N2 fixation and yield in soybean. New Phytol. 2019;221(4):2013–25.
Article
CAS
PubMed
Google Scholar
Schröder JJ, Smit AL, Cordell D, Rosemarin A. Improved phosphorus use efficiency in agriculture: a key requirement for its sustainable use. Chemosphere. 2011;84(6):822–31.
Article
PubMed
Google Scholar
Knott DR, Kumar J. Comparison of early generation yield testing and a single seed descent procedure in wheat breeding. Crop Sci. 1975;15(3):295–9.
Article
Google Scholar
Gray CD, Kinnear PR. IBM SPSS statistics 19 made simple. Am Stat. 2012;66(2):143.
Google Scholar
Li ZF, Xu MG, Zhang HM, Zhang SX, Zhang WJ. Sustainability of crop yields in China under long-term fertilization and different ecological conditions. Chin J Appl Ecol. 2010;21(5):1246–69.
Google Scholar
Bao SD. In: Li GZ, Yang GD, editors. Soil and agricultural chemistry analysis. Beijing: China Agriculture Press; 2000. p. 56–108.
Google Scholar
Meng L, Li H, Zhang L, Wang J. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J. 2015;3(3):269–83.
Article
Google Scholar
Van Ooijen JW. MapQTL 6, software for the mapping of quantitative trait loci in experimental populations of diploid species. Wageningen: Kyazma B.V; 2009.
Google Scholar
Brzosko E, Bajguz A. Nectar composition in moth-pollinated Platanthera bifolia and P. chlorantha and its importance for reproductive success. Planta. 2019;250(1):263–79.
Article
CAS
PubMed
Google Scholar
Kassambara A, Mundt F. Factoextra: extract and visualize the results of multivariate data analyses. R Package Version, vol. 1.0; 2017. p. 5. http://spout.ussg.indiana.edu/CRAN/web/packages/factoextra/index.html
Google Scholar
Lê S, Josse J, Husson F. FactoMineR: an R package for multivariate analysis. J Stat Softw. 2008:25. https://doi.org/10.18637/jss.v025.i01.