Lugon-Moulin N, Zhang M, Gadani F, Rossi L, Koller D, Krauss M, et al. Critical review of the science and options for reducing cadmium in tobacco (Nicotiana tabacum L.) and other plants. Adv. Agron. 2004;83:111–80.
Article
CAS
Google Scholar
Lozano-Rodriguez E, Hernandez L, Bonay P, Carpena-Ruiz R. Distribution of cadmium in shoot and root tissues of maize and pea plants: physiological disturbances. J Exp Bot. 1997;48:123–8.
Article
CAS
Google Scholar
Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, et al. Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res. 2009;16:765–94.
Article
CAS
Google Scholar
Herzig R, Nehnevajova E, Pfistner C, Schwitzguebel J-P, Ricci A, Keller C. Feasibility of labile Zn phytoextraction using enhanced tobacco and sunflower: results of five- and one-year field-scale experiments in Switzerland. Int J Phytoremed. 2014;16:735–54.
Article
CAS
Google Scholar
Grotz N, Guerinot ML. Molecular aspects of cu, Fe and Zn homeostasis in plants. Biochim Biophys Acta. 1763;2006:595–608.
Google Scholar
Broadley MR, White PJ, Hammond JP, Zelko I, Lux A. Zinc in plants. New Phytol. 2007;173:677–702.
Article
CAS
PubMed
Google Scholar
Sinclair SA, Krämer U. The zinc homeostasis network of land plants. Biochim Biophys Acta. 1823;2012:1553–67.
Google Scholar
Krupa Z, Siedlecka A, Skórzyńska-Polit E, Maksymiec W. Heavy-metal interactions with plant nutrients. In: MNV P, Strzałka K, editors. Physiology and biochemistry of metal toxicity and tolerance in plants. Dordrecht: Kluwer Academic Publishers; 2002. p. 287–301.
Chapter
Google Scholar
Barabasz A, Klimecka M, Kendziorek M, Weremczuk A, Ruszczyńska A, Bulska E, et al. The ratio of Zn to cd supply as a determinant of metal-homeostasis gene expression in tobacco and its modulation by overexpressing the metal exporter AtHMA4. J Exp Bot. 2016;67:6201–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ueno D, Iwashita T, Zhao F-J, Ma JF. Characterization of cd translocation and identification of the cd form in xylem sap of the cd-hyperaccumulator Arabidopsis halleri. Plant Cell Phys. 2008;49:540–8.
Article
CAS
Google Scholar
Küpper H, Kochian LV. Transcriptional regulation of metal transport genes and mineral nutrition during acclimatization to cadmium and zinc in the cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population). New Phytol. 2010;185:114–29.
Article
PubMed
CAS
Google Scholar
Bovet L, Rossi L, Lugon-Moulin L. Cadmium partitioning and gene expression studies in Nicotiana tabacum and Nicotiana rustica. Physiol. Plantarum. 2006;128:466–75.
Article
CAS
Google Scholar
Assunção AGL, Bleeker P, ten Bookum WM, Vooijs R, Schat H. Intraspecific variation of metal preference patterns for hyperaccumulation in Thlaspi caerulescens: evidence from binary metal exposures. Plant Soil. 2008;303:289–99.
Article
CAS
Google Scholar
de la Rosa G, Peralta-Videa JR, Montes M, Parsons JG, Cano-Aguilera I, Gardea-Torresday JL. Cadmium uptake and translocation in tumbleweed (Salsola kali), a potential cd-hyperaccumulator desert plant species: ICP/OES and XAS studies. Chemosphere. 2004;55:1159–68.
Article
PubMed
CAS
Google Scholar
Cun P, Sarrobert C, Richaud P, Chevalier A, Soreau P, Auroy P, et al. Modulation of Zn/cd P1B2-ATPase activities in Arabidopsis impacts differently on Zn and cd contents in shoots and seeds. Metallomics. 2014;6:2109–16.
Article
CAS
PubMed
Google Scholar
Palmer CM, Guerinot ML. Facing the challenges of cu, Fe and Zn homeostasis in plants. Nature Chem Biol. 2009;5:333–40.
Article
CAS
Google Scholar
Milner MJ, Seamon J, Craft E, Kochian LV. Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. J Exp Bot. 2013;64:369–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
López-Millán A-F, Ellis DR, Grusak MA. Identification and characterization of several new members of the ZIP family of metal ion transporters in Medicago truncatula. Plant Mol Biol. 2004;54:583–96.
Article
PubMed
Google Scholar
Ramesh SA, Shin R, Eide DJ, Schachtman DP. Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiol. 2003;133:126–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Papierniak A, Kozak K, Kendziorek M, Barabasz A, Palusińska M, Tiuryn J, et al. Contribution of NtZIP1-like to the regulation of Zn homeostasis Frontiers. Plant Sci. 2018;9:185.
Google Scholar
Kozak K, Papierniak A, Barabasz A, Kendziorek M, Palusińska M, et al. 2019. NtZIP11, a new Zn transporter specifically upregulated in tobacco leaves by toxic Zn level. Env. Exp. bot. 2019;157:69-78.
Article
CAS
Google Scholar
Grotz N, Fox T, Connolly E, Park W, Guerinot ML, Eide D. Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc Natl Acad Sci U S A. 1998;95:7220–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wintz H, Fox T, Wu YY, Feng V, Chen W, Chang HS, et al. Expression Profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis. J Biol Chem. 2003;278:47644–53.
Article
CAS
PubMed
Google Scholar
Burleigh SH, Kristensen BK, Bechmann IE. A plasma membrane zinc transporter from Medicago truncatula is up-regulated in roots by Zn fertilization, yet down-regulated by arbuscular mycorrhizal colonization. Plant Mol Biol. 2004;52:1077–88.
Article
Google Scholar
Barabasz A, Palusińska M, Papierniak A, Kendziorek M, Kozak K, Williams LE, et al. Functional analysis of NtZIP4B and Zn status-dependent expression pattern of tobacco ZIP genes. Frontiers Plant Sci. 2019;9:1984.
Article
Google Scholar
Fan W, Liu C, Cao B, Qin M, Long D, Xiang Z, Zhao A. Genome-wide identification and characterization of four gene families putatively involved in cadmium uptake, Translocation and Sequestration in Mulberry. Front Plant Sci. 2018;9:879.
Article
PubMed
PubMed Central
Google Scholar
Eide D, Broderius M, Fett J, Guerinot ML. A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci U S A. 1996;93:5624–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rogers EE, Eide DJ, Guerinot ML. Altered selectivity in an Arabidopsis metal transporter. Proc Natl Acad Sci U S A. 2000;97:12356–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cohen CK, Garvin DF, Kochian LV. Kinetic properties of a micronutrient transporter from Pisum sativum indicate a primary function in Fe uptake from the soil. Planta. 2004;218:784–92.
Article
CAS
PubMed
Google Scholar
Kenton A, Parokonny AS, Gleba YY, Bennett MD. Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics. Mol. Gen. Genomics. 1993;240:159–69.
CAS
Google Scholar
Sano T, Yoshihara T, Handa K, Sato MH, Nagata T, Hasezawa S. Metal ion homeostasis mediated by Nramp transporters in plant cells - focused on increased resistance to iron and cadmium ion. In: Weigert R, editor. Crosstalk and integration of membrane trafficking pathways. Rijeka, Shanghai: INTECH; 2012. p. 214–28.
Google Scholar
Eng BH, Guerinot D, Eide MH, Saier J. Sequence analyses and phylogenetic characterization of the ZIP family of metal ion transport proteins. J Membrane Biol. 1998;166:1–7.
Article
CAS
Google Scholar
Kobayashi T, Nakayama Y, Itai RN, Nakanishi H, Yoshihara T, Mori S, et al. Identification of novel cis-acting elements, IDE1 and IDE2, of the barley IDS2 gene promoter conferring iron-deficiency-inducible, root-specific expression in heterogeneous tobacco plants. Plant J. 2003;36:780–93.
Article
CAS
PubMed
Google Scholar
Zhang W, Ruan J, Ho T, You Y, Yu T, Quatrano RS. Cis-regulatory element based targeted gene finding: genome-wide identification of abscisic acid- and abiotic stress-responsive genes in Arabidopsis thaliana. Bioinformatics. 2005;21:3074–81.
Article
CAS
PubMed
Google Scholar
Ogo Y, Kobayashi T, Itai RN, Nakanishi H, Kakei Y, Takahashi M, et al. A novel NAC transcription factor, IDEF2, that recognizes the iron deficiency-responsive element 2 regulates the genes involved in iron homeostasis in plant. J Biol Chem. 2008;283:13407–17.
Article
CAS
PubMed
Google Scholar
Assunção AGL, Herrero E, Lin Y-F, Lin Y-F, Huettel B, Talukdar S, et al. Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proc Natl Acad Sci U S A. 2010;107:10296–301.
Article
PubMed
PubMed Central
Google Scholar
Ambawat S, Sharma P, Yadav NR, Yadav RC. 2013. MYB transcription factor genes as regulators for plant responses: an overview. Physiol Mol Biol Plants. 2013;19:307–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu CS, Chen YC, Lu CH, Hwang JK. Prediction of protein subcellular localization. Proteins. 2006;64:643–51.
Article
CAS
PubMed
Google Scholar
Fu X-Z, Zhou X, Xing F, Ling L-L, Chun, CP, Cao L, et al. Genome-wide identification, cloning and functional analysis of the Zinc/Iron-regulated transporter-like protein (ZIP) gene family in Trifoliate Orange (Poncirus trifoliata L. Raf.). Frontiers Plant Sci. 2017;8:588.
Google Scholar
Hart JJ, Welch RM, Norvell WA, Kochian LV. Transport interactions between cadmium and zinc in roots of bread and durum wheat seedlings. Physiol Plantarum. 2002;116:73–8.
Article
CAS
Google Scholar
Cataldo DA, Garland TR, Wildung RE. Cadmium uptake kinetics in intact soybean plants. Plant Physiol. 1983;3:844–8.
Article
Google Scholar
Pence NS, Larsen PB, Ebbs SD, Letham DLD, Lasat MM, Garvin DF, et al. The molecular physiology of heavy metal transport in the Zn/cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci U S A. 2000;97:4956–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lasat MM, Baker AJM, Kochian LV. Altered zinc compartmentation in the root symplasm and stimulated Zn2+ absorption into the leaf as mechanisms involved in zinc hyperaccumulation in Thlaspi caerulescens. Plant Physiol. 1998;118:875–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, et al. Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature. 2008;453:391–5.
Article
CAS
PubMed
Google Scholar
Papoyan A, Piñeros M, Kochian LV. Plant Cd2+ and Zn2+ status effects on root and shoot heavy metal accumulation in Thlaspi caerulescens. New Phytol. 2007;175:51–8.
Article
CAS
PubMed
Google Scholar
Xing JP, Jiang RE, Ueno D, Ma JF, Schat H, McGrath SP, et al. Variation in root-to-shoot translocation of cadmium and zinc among different accessions of the hyperaccumulators Thlaspi caerulescens and Thlaspi praecox. New Phytol. 2008;178:315–25.
Article
CAS
PubMed
Google Scholar
Mori S, Uraguchi S, Ishikawa S, Arao T. Xylem loading process is a critical factor in determining cd accumulation in the shoots of Solanum melongena and Solanum torvum. Env Exp Bot. 2009;67:127–32.
Article
CAS
Google Scholar
Clemens S, Ma JF. Toxic heavy metal and metalloid accumulation in crop plants and foods. Ann Rev Plant Biol. 2016;67:489–512.
Article
CAS
Google Scholar
Laporte MA, Denaix L, Pagès L, Sterckeman T, Flénet F, Dauguet S, et al. Longitudinal variation in cadmium influx in intact first order lateral roots of sunflower (Helianthus annuus. L). Plant Soil. 2013;372:581–95.
Article
CAS
Google Scholar
Page V, Feller U. Selective transport of zinc, manganese, nickel, cobalt and cadmium in the root system and transfer to the leaves in young wheat plants. Annals Bot. 2005;96:425–34.
Article
CAS
Google Scholar
Fodor F, Gáspár L, Morales F, Goforcena Y, Lucena JJ, Cseh E, et al. Effects of two iron sources on iron and cadmium allocation in poplar (Populus alba) plants exposed to cadmium. Tree Physiol. 2005;25:1173–80.
Article
CAS
PubMed
Google Scholar
Yoshihara T, Hodoshima H, Miyano Y, Shoji K, Shimada H, Goto F. Cadmium inducible Fe deficiency responses observed from macro and molecular views in tobacco pants. Plant Cell Rep. 2006;25:365–73.
Article
CAS
PubMed
Google Scholar
Barabasz A, Wilkowska A, Ruszczyńska A, Bulska E, Hanikenne M, Czarny M, et al. Metal response of transgenic tomato plants expressing P1B-ATPase. Physiol. Plantarum. 2012;145:315–31.
Article
CAS
Google Scholar
Kacperska A. Sensor types in signal transduction pathways in plant cells responding to abiotic stressors: do they depend on stress intensity? Physiol. Plantarum. 2004;122:159–68.
Article
CAS
Google Scholar
Ricachenevsky FK, Menguer PK, Sperotto RA, Fett JP. Got to hide your Zn away: molecular control of Zn accumulation and biotechnological applications. Plant Sci. 2015;236:1–17.
Article
CAS
PubMed
Google Scholar
Guerinot ML. The ZIP family of metal transporters. Biochim Biophys Acta. 2000;1465:190–8.
Article
CAS
PubMed
Google Scholar
Nishida S, Mizuno T, Obata H. Involvement of histidine-rich domain of ZIP family transporter TjZNT1 in metal ion specificity. Plant Physiol Bioch. 2008;46:601–6.
Article
CAS
Google Scholar
Pedas P, Schjoerring JK, Husted S. Identification and characterization of zinc-starvation-induced ZIP transporters from barley roots. Plant Physiol Biochem. 2009;47:377–83.
Article
CAS
PubMed
Google Scholar
Lee S, Jeong HJ, Kim SA, Lee J, Guerinot ML, An G. OsZIP5 is a plasma membrane zinc transporter in rice. Plant Mol Biol. 2010;73:507–17.
Article
CAS
PubMed
Google Scholar
Stephens BW, Cook DR, Grusak MA. Characterization of zinc transport by divalent metal transporters of the ZIP family from the model legume Medicago truncatula. Biometals. 2011;24:51–8.
Article
CAS
PubMed
Google Scholar
Li S, Zhou X, Huang Y, Zhu L, Zhang S, Zhao Y, et al. Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) gene family in maize. BMC Plant Biol. 2013;13:114.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tiong J, McDonald G, Genc Y, Shirley N, Langridge P, Chuang CY. Increased expression of six ZIP family genes by zinc (Zn) deficiency is associated with enhanced uptake and root-to-shoot translocation of Zn in barley (Hordeum vulgare). New Phytol. 2015;207:1–13.
Article
CAS
Google Scholar
Shingu Y, Kudo T, Ohsato S, Kimura M, Ono Y, Yamaguchi I, et al. Characterization of genes encoding metal tolerance proteins isolated from Nicotiana glauca and Nicotiana tabacum. Bioch Biophys Res Communic. 2005;331:675–80.
Article
CAS
Google Scholar
Hermand V, Julio E, deBorne FD, Punshon T, Ricachenevsky FK, Bellec A, et al. Inactivation of two newly identified tobacco heavy metal ATPases leads to reduced Zn and cd accumulation in shoots and reduced pollen germination. Metallomics. 2014;6:1427–40.
Article
CAS
PubMed
Google Scholar
Eckhardt U, Marques AM, Buckhout TJ. Two iron-regulated cation transporters from tomato complement metal uptake-deficient yeast mutants. Plant Mol Biol. 2001;45:437–48.
Article
CAS
PubMed
Google Scholar
Lin Y-F, Liang H-M, Yang S-Y, Boch A, Clemens S, Chen C-C, et al. Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter. New Phytol. 2009;182:392–404.
Article
CAS
PubMed
Google Scholar
Siemianowski O, Barabasz A, Weremczuk A, Ruszczyńska A, Bulska E, Williams LE, et al. Development of Zn-related necrosis in tobacco is enhanced by expressing AtHMA4 and depends on the apoplastic Zn levels. Plant Cell Env. 2013;36:1093–104.
Article
CAS
Google Scholar
Barabasz A, Krämer U, Hanikenne M, Rudzka J, Antosiewicz DM. Metal accumulation in tobacco expressing Arabidopsis halleri metal hyperaccumulation gene depends on external supply. J Exp Bot. 2010;61:3057–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25:402–8.
Article
CAS
PubMed
Google Scholar
Thompson JD, Higgins DG, Gibson TJ. Clustal-W – improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res. 1994;22:4673–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Käll L, Krogh A, Sonnhammer ELL. A combined Transmembrane topology and signal peptide prediction method. J Mol Biol. 2004;338:1027–36.
Article
PubMed
CAS
Google Scholar
Gietz DR, Schiestl RH. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nature Prot. 2007;3:31–3.
Article
CAS
Google Scholar