Lee JJ, Woodward AW, Chen ZJ. Gene expression changes and early events in cotton fibre development. Ann Bot. 2007;100(7):1391–401.
Article
CAS
PubMed
PubMed Central
Google Scholar
Angelini LG, Lazzeri A, Levita G, Fontanelli D, Bozzi C. Ramie (Boehmeria nivea (L.) gaud.) and Spanish broom (Spartium junceum L.) fibres for composite materials: agronomical aspects, morphology and mechanical properties. Ind Crop Prod. 2000;11(2–3):145–61.
Article
Google Scholar
Day A, Ruel K, Neutelings G, Cronier D, David H, Hawkins S, Chabbert B. Lignification in the flax stem: evidence for an unusual lignin in bast fibers. Planta. 2005;222(2):234–45.
Article
CAS
PubMed
Google Scholar
Zhang SY, Jia TT, Zhang Z, Zou XY, Fan SM, Lei K, Jiang X, Niu DD, Yuan YL, Shang HH. Insight into the relationship between S-lignin and fiber quality based on multiple research methods. Plant Physiol Biochem. 2020;147:251–61.
Article
CAS
PubMed
Google Scholar
Liu CJ. Deciphering the enigma of lignification: precursor transport, oxidation, and the topochemistry of lignin assembly. Mol Plant. 2012;5(2):304–17.
Article
CAS
PubMed
Google Scholar
Fan L, Shi WJ, Hu WR, Hao XY, Wang DM, Yuan H, Yan HY. Molecular and biochemical evidence for phenylpropanoid synthesis and presence of wall-linked phenolics in cotton fibers. J Integr Plant Biol. 2009;51(7):626–37.
Article
CAS
PubMed
Google Scholar
Gao Z, Sun W, Wang J, Zhao C, Zuo K. GhbHLH18 negatively regulates fiber strength and length by enhancing lignin biosynthesis in cotton fibers. Plant Sci. 2019;286:7–16.
Article
CAS
PubMed
Google Scholar
Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annu Rev Plant Biol. 2003;54(1):519–46.
Article
CAS
PubMed
Google Scholar
Zhong RM, Negrel WH, Ye J, Zheng-Hua. Dual methylation pathways in lignin biosynthesis. Plant Cell. 1998;10(12):2033–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ye ZH, Varner JE. Differential expression of two O-methyltransferases in lignin biosynthesis in Zinnia elegans. Plant Physiol. 1995;108(2):459–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bugos RC, Chiang VL, Campbell WH. cDNA cloning, sequence analysis and seasonal expression of lignin-bispecific caffeic acid/5-hydroxyferulic acid O-methyltransferase of aspen. Plant Mol Biol. 1991;17(6):1203–15.
Article
CAS
PubMed
Google Scholar
Vincent D, Lapierre C, Pollet B, Cornic G, Negroni L, Zivy M. Water deficits affect caffeate O-methyltransferase, lignification, and related enzymes in maize leaves. A proteomic investigation. Plant Physiol. 2005;137(3):949–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zubieta C, Kota P, Ferrer JL, Dixon RA, Noel JP. Structural basis for the modulation of lignin monomer methylation by caffeic acid/5-hydroxyferulic acid 3/5-O-methyltransferase. Plant Cell. 2002;14(6):1265–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li JJ, Zhang G, Yu JH, Li YY, Huang XH, Wang WJ, Tan R, Zhou JY, Liao H. Molecular cloning and characterization of caffeic acid 3-O-methyltransferase from the rhizome of Ligusticum chuanxiong. Biotechnol Lett. 2015;37(11):2295–302.
Article
CAS
PubMed
Google Scholar
Ma J, Liu F, Wang Q, Wang K, Jones DC, Zhang B. Comprehensive analysis of TCP transcription factors and their expression during cotton (Gossypium arboreum) fiber early development. Sci Rep. 2016;6:1–10.
CAS
Google Scholar
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R. TBtools-an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13(8):1194–202.
Article
CAS
PubMed
Google Scholar
Qiao X, Li Q, Yin H, Qi K, Li L, Wang R, Zhang S, Paterson AH. Gene duplication and evolution in recurring polyploidization–diploidization cycles in plants. Genome Biol. 2019;20(1):38.
Article
PubMed
PubMed Central
Google Scholar
Hurst LD. The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends Genet. 2002;9(18):486–7.
Article
Google Scholar
Ma W, Zhao T, Li J, Liu B, Fang L, Hu Y, Zhang T. Identification and characterization of the GhHsp20 gene family in Gossypium hirsutum. Sci Rep. 2016;6:1–13.
CAS
Google Scholar
Kim J, Choi B, Cho B-K, Lim H-S, Kim JB, Natarajan S, Kwak E, Bae H. Molecular cloning, characterization and expression of the caffeic acid O-methyltransferase (COMT) ortholog from kenaf (Hibiscus cannabinus). Plant Omics. 2013;6(4):246–53.
CAS
Google Scholar
Binder JX, Pletscher-Frankild S, Tsafou K, Stolte C, O’Donoghue SI, Schneider R, Jensen LJ. COMPARTMENTS: unification and visualization of protein subcellular localization evidence. Database. 2014;2014:12.
Article
CAS
Google Scholar
Herold N, Will CL, Wolf E, Kastner B, Urlaub H, Lührmann R. Conservation of the protein composition and electron microscopy structure of Drosophila melanogaster and human spliceosomal complexes. Mol Cell Biol. 2009;29(1):281–301.
Article
CAS
PubMed
Google Scholar
Andersen JS, Lyon CE, Fox AH, Leung AK, Lam YW, Steen H, Mann M, Lamond AI. Directed proteomic analysis of the human nucleolus. Curr Biol. 2002;12(1):1–11.
Article
PubMed
Google Scholar
Horton P, Park K-J, Obayashi T, Fujita N, Harada H, Adams-Collier C, Nakai K. WoLF PSORT: protein localization predictor. Nucleic Acid Res. 2007;35(suppl_2):W585–7.
Article
PubMed
PubMed Central
Google Scholar
Briesemeister S, Rahnenführer J, Kohlbacher O. Going from where to why—interpretable prediction of protein subcellular localization. Bioinformatics. 2010;26(9):1232–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pierleoni A, Martelli PL, Fariselli P, Casadio R. BaCelLo: a balanced subcellular localization predictor. Bioinformatics. 2006;22(14):e408–16.
Article
CAS
PubMed
Google Scholar
Goldberg T, Hamp T, Rost B. LocTree2 predicts localization for all domains of life. Bioinformatics. 2012;28(18):i458–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu Y, Chen J, Fang L, Zhang Z, Ma W, Niu Y, Ju L, Deng J, Zhao T, Lian J. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat Genet. 2019;51(4):739–48.
Article
CAS
PubMed
Google Scholar
Li P-T, Wang M, Lu Q-W, Ge Q, Liu A-Y, Gong J-W, Shang H-H, Gong W-K, Li J-W, Song W-W. Comparative transcriptome analysis of cotton fiber development of Upland cotton (Gossypium hirsutum) and Chromosome Segment Substitution Lines from G. hirsutum× G. barbadense. BMC Genom. 2017;18(1):705.
Article
CAS
Google Scholar
Zhang Z, Li J, Jamshed M, Shi Y, Liu A, Gong J, Wang S, Zhang J, Sun F, Jia F, et al. Genome-wide quantitative trait loci reveal the genetic basis of cotton fibre quality and yield-related traits in a Gossypium hirsutum recombinant inbred line population. Plant Biotechnol J. 2020;18(1):239–53.
Article
CAS
PubMed
Google Scholar
Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, Zhang J, Saski CA, Scheffler BE, Stelly DM, et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol. 2015;33(5):531–7.
Article
CAS
PubMed
Google Scholar
Wang K, Wang Z, Li F, Ye W, Wang J, Song G, Yue Z, Cong L, Shang H, Zhu S. The draft genome of a diploid cotton Gossypium raimondii. Nat Genet. 2012;44(10):1098–103.
Article
CAS
PubMed
Google Scholar
Lu Q, Shi Y, Xiao X, Li P, Gong J, Gong W, Liu A, Shang H, Li J, Ge Q, et al. Transcriptome Analysis Suggests That Chromosome Introgression Fragments from Sea Island Cotton (Gossypium barbadense) Increase Fiber Strength in Upland Cotton (Gossypium hirsutum). G3 (Bethesda). 2017;7(10):3469–79.
Article
CAS
Google Scholar
Shi Y, Li W, Li A, Ge R, Zhang B, Li J, Liu G, Li J, Liu A, Shang H. Constructing a high-density linkage map for Gossypium hirsutum× Gossypium barbadense and identifying QTLs for lint percentage. J Integr Plant Biol. 2015;57(5):450–67.
Article
CAS
PubMed
Google Scholar
Du X, Huang G, He S, Yang Z, Sun G, Ma X, Li N, Zhang X, Sun J, Liu M, et al. Resequencing of 243 diploid cotton accessions based on an updated a genome identifies the genetic basis of key agronomic traits. Nat Genet. 2018;50(6):796–802.
Article
CAS
PubMed
Google Scholar
Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J, Jin D, Llewellyn D, Showmaker KC, Shu S, Udall J, et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature. 2012;492(7429):423–7.
Article
CAS
PubMed
Google Scholar
Gan X, Stegle O, Behr J, Steffen JG, Drewe P, Hildebrand KL, Lyngsoe R, Schultheiss SJ, Osborne EJ, Sreedharan VT, et al. Multiple reference genomes and transcriptomes for Arabidopsis thaliana. Nature. 2011;477(7365):419–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brenchley R, Spannagl M, Pfeifer M, Barker GL, D’Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature. 2012;491(7426):705–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Otto SP. The evolutionary consequences of polyploidy. Cell. 2007;131(3):452–62.
Article
CAS
PubMed
Google Scholar
Soltis PS, Soltis DE. The role of hybridization in plant speciation. Annu Rev Plant Biol. 2009;60:561–88.
Article
CAS
PubMed
Google Scholar
Grover CE, Gallagher JP, Szadkowski EP, Yoo MJ, Flagel LE, Wendel JF. Homoeolog expression bias and expression level dominance in allopolyploids. New Phytol. 2012;196(4):966–71.
Article
CAS
PubMed
Google Scholar
Leach LJ, Belfield EJ, Jiang C, Brown C, Mithani A, Harberd NP. Patterns of homoeologous gene expression shown by RNA sequencing in hexaploid bread wheat. BMC Genomics. 2014;15(1):276.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cheng F, Wu J, Fang L, Sun S, Liu B, Lin K, Bonnema G, Wang X. Biased gene fractionation and dominant gene expression among the subgenomes of Brassica rapa. PLoS One. 2012;7(5):e36442.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng F, Wu J, Cai X, Liang J, Freeling M, Wang X. Gene retention, fractionation and subgenome differences in polyploid plants. Nature plants. 2018;4(5):258–68.
Article
CAS
PubMed
Google Scholar
Renny-Byfield S, Gallagher JP, Grover CE, Szadkowski E, Page JT, Udall JA, Wang X, Paterson AH, Wendel JF. Ancient gene duplicates in Gossypium (cotton) exhibit near-complete expression divergence. Genome Biology and Evolution. 2014;6(3):559–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu N, Ma W, Han D, Liu Y, Wang Z, Wang N, Yang G, Qu G, Wang Q, Zhao K. Genome-wide analysis of the Catalpa bungei caffeic acid O-methyltransferase (COMT) gene family: identification and expression profiles in normal, tension, and opposite wood. PeerJ. 2019;7:e6520.
Article
PubMed
PubMed Central
CAS
Google Scholar
Van Zee JP, Schlueter JA, Schlueter S, Dixon P, Sierra CAB, Hill CA. Paralog analyses reveal gene duplication events and genes under positive selection in Ixodes scapularis and other ixodid ticks. BMC Genomics. 2016;17(1):241.
Article
PubMed
PubMed Central
CAS
Google Scholar
Conant GC, Wolfe KH. Turning a hobby into a job: how duplicated genes find new functions. Nat Rev Genet. 2008;9(12):938–50.
Article
CAS
PubMed
Google Scholar
Ounaroon A, Decker G, Schmidt J, Lottspeich F. Kutchan TM: (R, S)-Reticuline 7-O-methyltransferase and (R, S)-norcoclaurine 6-O-methyltransferase of Papaver somniferum–cDNA cloning and characterization of methyl transfer enzymes of alkaloid biosynthesis in opium poppy. Plant J. 2003;36(6):808–19.
Article
CAS
PubMed
Google Scholar
Ge Q, Cui Y, Li J, Gong J, Lu Q, Li P, Shi Y, Shang H, Liu A, Deng X, et al. Disequilibrium evolution of the Fructose-1, 6-bisphosphatase gene family leads to their functional biodiversity in Gossypium species. BMC Genomics. 2020;21:379.
Lamaoui M, Jemo M, Datla R, Bekkaoui F. Heat and drought stresses in crops and approaches for their mitigation. Front Chem. 2018;6:26.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rao KM, Raghavendra A, Reddy KJ. Physiology and molecular biology of stress tolerance in plants. Dordrecht: Springer Science & Business Media; 2006.
Google Scholar
Xu P, Liu Z, Fan X, Gao J, Zhang X, Zhang X, Shen X. De novo transcriptome sequencing and comparative analysis of differentially expressed genes in Gossypium aridum under salt stress. Gene. 2013;525(1):26–34.
Article
CAS
PubMed
Google Scholar
Sazegari S, Niazi A, Ahmadi FS. A study on the regulatory network with promoter analysis for Arabidopsis DREB-genes. Bioinformation. 2015;11(2):101–6.
Article
PubMed
PubMed Central
Google Scholar
Meier S, Bastian R, Donaldson L, Murray S, Bajic V, Gehring C. Co-expression and promoter content analyses assign a role in biotic and abiotic stress responses to plant natriuretic peptides. BMC Plant Biol. 2008;8(1):24.
Article
PubMed
PubMed Central
CAS
Google Scholar
Maleck K, Levine A, Eulgem T, Morgan A, Schmidl J, Lawton K, Dangl J, Dietrich R. An Arabidopsis promoter element shared among genes co-regulated during systemic acquired disease resistance. Nat Genet. 2000;26:403–10.
Article
CAS
PubMed
Google Scholar
Eulgem T, Rushton PJ, Robatzek S, Somssich IE. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 2000;5(5):199–206.
Article
CAS
PubMed
Google Scholar
Huang T, Nicodemus J, Zarka DG, Thomashow MF, Wisniewski M, Duman JG. Expression of an insect (Dendroides canadensis) antifreeze protein in Arabidopsis thaliana results in a decrease in plant freezing temperature. Plant Mol Biol. 2002;50(3):333–44.
Article
CAS
PubMed
Google Scholar
Hara K, Yagi M, Kusano T, Sano H. Rapid systemic accumulation of transcripts encoding a tobacco WRKY transcription factor upon wounding. Mol Gen Genet. 2000;263(1):30–7.
Article
CAS
PubMed
Google Scholar
Rizhsky L, Davletova S, Liang H, Mittler R. The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. J Biol Chem. 2004;279(12):11736–43.
Article
CAS
PubMed
Google Scholar
Pnueli L, Hallak-Herr E, Rozenberg M, Cohen M, Goloubinoff P, Kaplan A, Mittler R. Molecular and biochemical mechanisms associated with dormancy and drought tolerance in the desert legume Retama raetam. Plant J. 2002;31(3):319–30.
Article
CAS
PubMed
Google Scholar
Seki M, Ishida J, Narusaka M, Fujita M, Nanjo T, Umezawa T, Kamiya A, Nakajima M, Enju A, Sakurai T. Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Function Integr Genom. 2002;2(6):282–91.
Article
CAS
Google Scholar
Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R. When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol. 2004;134(4):1683–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abe H, YamaguchiShinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K. Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell. 1997;9(10):1859–68.
CAS
PubMed
PubMed Central
Google Scholar
Thomashow MF. Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol. 2010;154(2):571–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Sun T, Liu S, Dong L, Liu C, Song W, Liu J, Gai S. MYC cis-elements in PsMPT promoter is involved in chilling response of Paeonia suffruticosa. PLoS One. 2016;11(5):e0155780.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhao Y. Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol. 2010;61:49–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramawat KG, Mérillon J-M. Natural products: phytochemistry, botany and metabolism of alkaloids, phenolics and terpenes. Heidelberg: Springer; 2013.
Book
Google Scholar
Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S. Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem. 2013;72:1–20.
Article
CAS
PubMed
Google Scholar
de la Rosa LA, Alvarez-Parrilla E and Gonzalez-Aguilar GA. Fruit and Vegetable Phytochemicals: Chemistry, Nutritional Value and Stability. Ames: Wiley; 2009.
Naikoo MI, Dar MI, Raghib F, Jaleel H, Ahmad B, Raina A, Khan FA, Naushin F. Role and regulation of plants Phenolics in abiotic stress tolerance: an overview. In: Plant Signaling Molecules. Elsevier; 2019. p. 157–68.
Chapter
Google Scholar
Dixon RAP, N. L. Stress-induced Phenylpropanoid metabolism. Plant Cell. 1995;7(7):1085–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Handa N, Kohli SK, Sharma A, Thukral AK, Bhardwaj R, Abd Allah EF, Alqarawi AA, Ahmad P. Selenium modulates dynamics of antioxidative defence expression, photosynthetic attributes and secondary metabolites to mitigate chromium toxicity in Brassica juncea L. plants. Environ Exp Bot. 2019;161:180–92.
Article
CAS
Google Scholar
Smirnov OE, Kosyan AM, Kosyk OI, Taran NY. Response of phenolic metabolism induced by Aluminium toxicity in Fagopyrum Esculentum Moench. Plants. Ukrainian Biochem J. 2015;87(6):129–35.
Article
CAS
Google Scholar
Weretilnyk EA, Alexander KJ, Drebenstedt M, Snider JD, Summers PS, Moffatt BA. Maintaining methylation activities during salt stress. The involvement of adenosine kinase. Plant Physiol. 2001;125(2):856–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ancillotti C, Bogani P, Biricolti S, Calistri E, Checchini L, Ciofi L, Gonnelli C, Del Bubba M. Changes in polyphenol and sugar concentrations in wild type and genetically modified Nicotiana langsdorffii Weinmann in response to water and heat stress. Plant Physiol Biochem. 2015;97:52–61.
Article
CAS
PubMed
Google Scholar
Sasayama D, Azuma T, Itoh K. Involvement of cell wall-bound phenolic acids in decrease in cell wall susceptibility to expansins during the cessation of rapid growth in internodes of floating rice. J Plant Physiol. 2011;168(2):121–7.
Article
CAS
PubMed
Google Scholar
Fan L, Linker R, Gepstein S, Tanimoto E, Yamamoto R, Neumann PM. Progressive inhibition by water deficit of cell wall extensibility and growth along the elongation zone of maize roots is related to increased lignin metabolism and progressive stelar accumulation of wall phenolics. Plant Physiol. 2006;140(2):603–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Pichersky E. Identification of specific residues involved in substrate discrimination in two plant O-methyltransferases. Archiv Biochem Biophys. 1999;368(1):172–80.
Article
CAS
Google Scholar
Gou JY, Wang LJ, Chen SP, Hu WL, Chen XY. Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary cell wall synthesis. Cell Res. 2007;17(5):422–34.
Article
CAS
PubMed
Google Scholar
Al-Ghazi Y, Bourot S, Arioli T, Dennis ES, Llewellyn DJ. Transcript profiling during fiber development identifies pathways in secondary metabolism and cell wall structure that may contribute to cotton fiber quality. Plant Cell Physiol. 2009;50(7):1364–81.
Article
CAS
PubMed
Google Scholar
Grimmig B, Kneusel R, Junghanns K, Matern U. Expression of BifunctionaI Caffeoyl-CoA 3-O-methyltransferase in stress compensation and lignification. Plant Biol. 1999;1(3):299–310.
Article
CAS
Google Scholar
Ni W, Fahrendorf T, Ballance GM, Lamb CJ, Dixon RA. Stress responses in alfalfa (Medicago sativa L.). XX. Transcriptional activation of phenylpropanoid pathway genes in elicitor-induced cell suspension cultures. Plant Mol Biol. 1996;30(3):427–38.
Article
CAS
PubMed
Google Scholar
Cui Y, BELL AA, Joost O, Magill C. Expression of potential defense response genes in cotton. Physiol Mol Plant Pathol. 2000;56(1):25–31.
Article
CAS
Google Scholar
Li C, He Q, Zhang F, Yu J, Li C, Zhao T, Zhang Y, Xie Q, Su B, Mei L. Melatonin enhances cotton immunity to Verticillium wilt via manipulating lignin and gossypol biosynthesis. Plant J. 2019;100(4):784–800.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu J, Benedict CR, Stipanovic RD, Bell AA. Purification and characterization ofS-Adenosyl-l-methionine: desoxyhemigossypol-6-O-methyltransferase from cotton plants. An enzyme capable of methylating the defense terpenoids of cotton. Plant Physiol. 1999;121(3):1017–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang W, Li R, Zhu Q, Tang X, Zhao Q. Transcriptomic and physiological analysis of common duckweed Lemna minor responses to NH 4+ toxicity. BMC Plant Biol. 2016;16(1):92.
Article
PubMed
PubMed Central
CAS
Google Scholar
P-t L, T-t C, Lu Q-w, Ge Q, Gong W-K, Liu A-Y, Gong J-W, Shang H-H, Deng X-Y, Li J-W. Transcriptomic and biochemical analysis of upland cotton (Gossypium hirsutum) and a chromosome segment substitution line from G. hirsutum× G. barbadense in response to Verticillium dahliae infection. BMC Plant Biol. 2019;19(1):1–24.
Google Scholar
Tang Y, Zhang ZN, Lei Y, Hu G, Liu JF, Hao MY, Chen AM, Peng QZ, Wu JH. Cotton WATs modulate SA biosynthesis and local lignin deposition participating in plant resistance against Verticillium dahliae. Front Plant Sci. 2019;10:526.
Article
PubMed
PubMed Central
Google Scholar
Xu L, Zhu L, Tu L, Liu L, Yuan D, Jin L, Long L, Zhang X. Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry. J Exp Bot. 2011;62(15):5607–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tuteja N. Mechanisms of high salinity tolerance in plants. Methods Enzymol. 2007;428:419–38.
Article
CAS
PubMed
Google Scholar
Joshi A, Dang HQ, Vaid N, Tuteja N. Isolation of high salinity stress tolerant genes from Pisum sativum by random overexpression in Escherichia coli and their functional validation. Plant Signal Behav. 2009;4(5):400–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu DD, Sun XS, Liu L, Shi HD, Chen SY, Zhao DK. Overexpression of the melatonin synthesis-related gene SlCOMT1 improves the resistance of tomato to salt stress. Molecules. 2019;24(8):1514.
Article
CAS
PubMed Central
Google Scholar
Liu DG, He SZ, Song XJ, Zhai H, Liu N, Zhang DD, Ren ZT, Liu QC. IbSIMT1, a novel salt-induced methyltransferase gene from Ipomoea batatas, is involved in salt tolerance. Plant Cell Tissue Org Cult. 2015;120(2):701–15.
Article
CAS
Google Scholar
Wang M, Zhu X, Wang K, Lu C, Luo M, Shan T, Zhang Z. A wheat caffeic acid 3-O-methyltransferase TaCOMT-3D positively contributes to both resistance to sharp eyespot disease and stem mechanical strength. Sci Rep. 2018;8(1):1–14.
CAS
Google Scholar
Ma QH. The expression of caffeic acid 3-O-methyltransferase in two wheat genotypes differing in lodging resistance. J Exp Bot. 2009;60(9):2763–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu X, Wu J, Luo Y, Bragg J, Anderson O, Vogel J, Gu YQ. Phylogenetic, molecular, and biochemical characterization of Caffeic acid o-methyltransferase gene family in Brachypodium distachyon. Int J Plant Genom. 2013;2013(5–6):423189.
Google Scholar
Hsu C-Y, MAA II, Miao Q, Saha S, Jenkins JN, Ayubov MS, Abdurakhmonov IY, Peterson DG, Ma D-P. Transcriptome analysis of ten days post Anthesis elongating Fiber in the upland cotton (Gossypium hirsutum) chromosome substitution line CS-B25. Am J Plant Sci. 2018;9:1334–61.
Article
CAS
Google Scholar
Bhardwaj R, Handa N, Sharma R, Kaur H, Kohli S, Kumar V, Kaur P. Lignins and abiotic stress: an overview. In: Ahmad P, Wani M, editors. Physiological mechanisms and adaptation strategies in plants under changing environment. New York: Springer; 2014. p. 267–96.
Chapter
Google Scholar
Han LB, Li YB, Wang HY, Wu XM, Li CL, Luo M, Wu SJ, Kong ZS, Pei Y, Jiao GL, et al. The dual functions of WLIM1a in cell elongation and secondary wall formation in developing cotton fibers. Plant Cell. 2013;25(11):4421–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu T, Liang C, Meng Z, Sun G, Meng Z, Guo S, Zhang R. CottonFGD: an integrated functional genomics database for cotton. BMC Plant Biol. 2017;17(1):1–9.
Article
CAS
Google Scholar
Cao J, Schneeberger K, Ossowski S, Günther T, Bender S, Fitz J, Koenig D, Lanz C, Stegle O, Lippert C. Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet. 2011;43(10):956.
Article
CAS
PubMed
Google Scholar
Argout X, Salse J, Aury J-M, Guiltinan MJ, Droc G, Gouzy J, Allegre M, Chaparro C, Legavre T, Maximova SN. The genome of Theobroma cacao. Nat Genet. 2011;43(2):101–8.
Article
CAS
PubMed
Google Scholar
Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acid Res. 2011;39(suppl_2):W29–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23(21):2947–8.
Article
CAS
PubMed
Google Scholar
Kumar S, Stecher G, Tamura K. Evolution: MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol. 2016;33(7):1870–4.
Article
CAS
Google Scholar
Hu B, Jin J, Guo A-Y, Zhang H, Luo J, Gao G. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics. 2015;31(8):1296–7.
Article
PubMed
Google Scholar
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS. MEME SUITE: tools for motif discovery and searching. Nucleic Acid Res. 2009;37(suppl_2):W202–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002;30(1):325–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu CS, Chen YC, Lu CH, Hwang JK. Prediction of protein subcellular localization. Proteins Struct Function Bioinform. 2006;64(3):643–51.
Article
CAS
Google Scholar
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, Lewis S, Hub A, Group WPW. AmiGO: online access to ontology and annotation data. Bioinformatics. 2009;25(2):288–9.
Article
CAS
PubMed
Google Scholar
Jamshed M, Jia F, Gong J, Palanga KK, Shi Y, Li J, Shang H, Liu A, Chen T, Zhang Z, et al. Identification of stable quantitative trait loci (QTLs) for fiber quality traits across multiple environments in Gossypium hirsutum recombinant inbred line population. BMC Genomics. 2016;17:197.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sun F-D, Zhang J-H, Wang S-F, Gong W-K, Shi Y-Z, Liu A-Y, Li J-W, Gong J-W, Shang H-H, Yuan Y-L. QTL mapping for fiber quality traits across multiple generations and environments in upland cotton. Mol Breed. 2012;30(1):569–82.
Article
Google Scholar
Rychlik W. OLIGO 7 primer analysis software. In: PCR primer design. Springer; 2007. p. 35–59.
Chapter
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25(4):402–8.
Article
CAS
PubMed
Google Scholar