Mitsuya S, Yano K, Kawasaki M, Taniguchi M, Miyake H. Relationship between the distribution of Na and the damages caused by salinity in the leaves of rice seedlings grown under a saline condition. Plant Prod Sci. 2002;5:269–74.
Article
CAS
Google Scholar
Cotsaftis O, Plett D, Shirley N, Tester M, Hrmova M. A two-staged model of Na+ exclusion in rice explained by 3d modeling of HKT transporters and alternative splicing. PLoS One. 2012;7:e39865.
Article
CAS
Google Scholar
Neang S, De Ocampo M, Egdane JA, Platten JD, Ismail AM, Skoulding NS, Kano-Nakata M, Yamauchi A, Mitsuya S. Fundamental parenchyma cells are involved in Na+ and cl− removal ability in rice leaf sheath. Funct Plant Biol. 2019;46:743–55.
Article
CAS
Google Scholar
Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008;59:651–81.
Article
CAS
Google Scholar
Horie T, Hauser F, Schroeder JI. HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends Plant Sci. 2009;14:660–8.
Article
CAS
Google Scholar
Hauser F, Horie T. A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant Cell Environ. 2010;33:552–65.
Article
CAS
Google Scholar
Sunarpi HT, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Chan WY, Leung HY, Hattori K, Konomi M, Osumi M, Yamagami M, Schroeder JI, Uozumi N. Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant J. 2005;44:928–38.
Article
CAS
Google Scholar
Davenport RJ, Muñoz-Mayor A, Jha D, Essah PA, Rus A, Tester M. The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant Cell Environ. 2007;30:497–507.
Article
CAS
Google Scholar
Møller IS, Gilliham M, Jha D, Mayo GM, Roy SJ, Coates JC, Haseloff J, Tester M. Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis. Plant Cell. 2009;21:2163–78.
Article
CAS
Google Scholar
Wang R, Jing W, Xiao L, Jin Y, Shen L, Zhang W. The rice high-affinity potassium transporter l;l is involved in salt tolerance and regulated by an MYB-type transcription factor. Plant Physiol. 2015;168:1076–90.
Article
CAS
Google Scholar
Suzuki K, Yamaji N, Costa A, Okuma E, Kobayashi NI, Kashiwagi T, Katsuhara M, Wang C, Tanoi K, Murata Y, Schroeder JI, Ma JF, Horie T. OsHKT1;4-mediated Na+ transport in stems contributes to Na+ exclusion from leaf blades of rice at the reproductive growth stage upon salt stress. BMC Plant Biol. 2016;16:22.
Article
CAS
Google Scholar
Oda Y, Kobayashi NI, Tanoi K, Ma JF, Itou Y, Katsuhara M, Itou T, Horie T. T-DNA tagging-based gain-of-function of OsHKT1;4 reinforces Na exclusion from leaves and stems but triggers Na toxicity in roots of rice under salt stress. Int J Mol Sci. 2018;19:235.
Article
CAS
Google Scholar
Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genet. 2005;37:1141–6.
Article
CAS
Google Scholar
Mian A, Oomen RJFJ, Isayenkov S, Sentenac H, Maathuis FJM, Véry AA. Over-expression of a Na+- and K+-permeable HKT transporter in barley improves salt tolerance. Plant J. 2011;68:468–79.
Article
CAS
Google Scholar
Negrão S, Courtois B, Ahmadi N, Abreu I, Saibo N, Oliveira MM. Recent updates on salinity stress in rice: from physiological to molecular responses. Crit Rev Plant Sci. 2011;30:329–77.
Article
CAS
Google Scholar
Kobayashi NI, Yamaji N, Yamamoto H, Okubo K, Ueno H, Costa A, Tanoi K, Matsumura H, Fujii-Kashino M, Horiuchi T, Nayef MA, Shabala S, An G, Ma JF, Horie T. OsHKT1;5 mediates Na+ exclusion in the vasculature to protect leaf blades and reproductive tissues from salt toxicity in rice. Plant J. 2017;91:657–70.
Article
CAS
Google Scholar
Horie T, Costa A, Kim TH, Han MJ, Horie R, Leung H-Y, Miyao A, Hirochika H, An G, Schroeder JI. Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth. EMBO J. 2007;20:3003–14.
Article
CAS
Google Scholar
Jabnoune M, Espeout S, Mieulet D, Fizames C, Verdeil J-L, Conéjéro G, Rodríguez-Navarro A, Sentenac H, Guiderdoni E, Abdelly C, Véry A-A. Diversity in expression patterns and functional properties in the rice HKT transporter family. Plant Physiol. 2009;150:1955–71.
Article
CAS
Google Scholar
Yao X, Horie T, Xue S, Leung H-Y, Katsuhara M, Brodsky DE, Wu Y, Schroeder JI. Differential sodium and potassium transport selectivities of the rice OsHKT2;1 and OsHKT2;2 transporters in plant cells. Plant Physiol. 2010;152:341–55.
Article
CAS
Google Scholar
Apse MP, Aharon GS, Snedden WA, Blumwald E. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science. 1999;285:1256–8.
Article
CAS
Google Scholar
Blumwald E, Aharon GS, Apse MP. Sodium transport in plant cells. BBA-Biomembranes. 2000;1465:140–51.
Article
CAS
Google Scholar
Fukuda A, Nakamura A, Tagiri A, Tanaka H, Miyao A, Hirochika H, Tanaka Y. Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. Plant Cell Physiol. 2004;45:146–59.
Article
CAS
Google Scholar
Yamaguchi T, Blumwald E. Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci. 2005;10:615–20.
Article
CAS
Google Scholar
Fukuda A, Nakamura A, Hara N, Toki S, Tanaka Y. Molecular and functional analyses of rice NHX-type Na+/H+ antiporter genes. Planta. 2011;233:175–88.
Article
CAS
Google Scholar
Wu H, Shabala L, Zhou M, Su N, Wu Q, Ul-Haq T, Zhu J, Mancuso S, Azzarello E, Shabala S. Root vacuolar Na+ sequestration but not exclusion from uptake correlates with barley salt tolerance. Plant J. 2019;100:55–67.
Article
CAS
Google Scholar
Shi H, Quintero FJ, Pardo JM, Zhu JK. The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell. 2002;14:465–77.
Article
CAS
Google Scholar
Martínez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu J-K, Pardo JM, Quinero FJ. Conservation of the salt overly sensitive pathway in rice. Plant Physiol. 2007;143:1001–12.
Article
CAS
Google Scholar
Olías R, Eljakaoui Z, Li J, DeMorales PA, Marín-Manzano MC, Pardo JM, Belver A. The plasma membrane Na+/H+ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs. Plant Cell Environ. 2009;32:904–16.
Article
Google Scholar
Wu H, Shabala L, Azzarello E, Huang YQ, Pandolfi C, Su NN, Wu Q, Cai SG, Bazihizina N, Wang L, Zhou M, Mancuso S, Chen Z, Shabala S. Na+ extrusion from the cytosol and tissue-specific Na+ sequestration in roots confer differential salt stress tolerance between durum and bread wheat. J Exp Bot. 2018;69:3987–4001.
Article
CAS
Google Scholar
Oh D-H, Leidi E, Zhang Q, Hwang S-M, Li Y, Quintero FJ, Jiang X, D’Urzo MP, Lee SY, Zhao Y, Bahk JD, Bressan RA, Yun D-J, Pardo JM, Bohnert HJ. Loss of halophytism by interference with SOS1 expression. Plant Physiol. 2009;151:210–22.
Article
CAS
Google Scholar
Olías R, Eljakaoui Z, Pardo JM, Belver A. The Na+/H+ exchanger SOS1 controls extrusion and distribution of Na+ in tomato plants under salinity conditions. Plant Signal Behav. 2009;4:973–6.
Article
Google Scholar
Zhu M, Shabala L, Cuin TA, Huang X, Zhou M, Munns R, Shabala S. Nax loci affect SOS1-like Na+/H+ exchanger expression and activity in wheat. J Exp Bot. 2016;67:835–44.
Article
CAS
Google Scholar
Zhu M, Zhou M, Shabala L, Shabala S. Physiological and molecular mechanisms mediating xylem Na+ loading in barley in the context of salinity stress tolerance. Plant Cell Environ. 2017;40:1009–20.
Article
CAS
Google Scholar
Mahi HE, Hormaeche JP, Luca AD, Villalta I, Espartero J, Arjona FG, Fernández JL, Bundó M, Mendoza I, Mieulet D, Lalanne E, Lee SY, Yun DJ, Guiderdoni E, Aguilar M, Leidi EO, Pardo JM, Quintero FJ. A critical role of sodium flux via the plasma membrane Na+/H+ exchanger SOS1 in the salt tolerance of rice. Plant Physiol. 2019;180:1046–65.
Article
CAS
Google Scholar
Li B, Byrt C, Qiu J, Baumann U, Hrmova M, Evrard A, Johnson AAT, Birnbaum KD, Mayo GM, Jha D, Henderson SW, Tester M, Gilliham M, Roy SJ. Identification of a stelar-localized transport protein that facilitates root-to-shoot transfer of chloride in Arabidopsis. Plant Physiol. 2016;170:1014–29.
Article
CAS
Google Scholar
Qiu J, Henderson SW, Tester M, Roy SJ, Gilliham M. SLAH1, a homologue of the slow type anion channel SLAC1, modulates shoot cl− accumulation and salt tolerance in Arabidopsis thaliana. J Exp Bot. 2016;68:4495–505.
Article
CAS
Google Scholar
Colmenero-Flores JM, Martínez G, Gamba G, Vázquez N, Iglesias DJ, Brumós J, Talón M. Identification and functional characterization of cation-chloride cotransporters in plants. Plant J. 2007;50:278–92.
Article
CAS
Google Scholar
Chen ZC, Yamaji N, Fujii-Kashino M, Ma JF. (2016) A cation-chloride cotransporter gene is required for cell elongation and osmoregulation in rice. Plant Physiol. 2016;171:494–507.
Nakamura A, Fukuda A, Sakai S, Tanaka Y. Molecular cloning, functional expression and subcellular localization of two putative vacuolar voltage-gated chloride channels in rice (Oryza sativa L.). Plant Cell Physiol. 2006;47:32–42.
Article
CAS
Google Scholar
Neang S, De Ocampo M, Egdane JA, Platten JD, Ismail AM, Seki M, Suzuki Y, Skoulding NS, Kano-Nakata M, Yamauchi A, Mitsuya S. GWAS approach to find SNPs associated with salt removal in rice leaf sheath. Ann Bot. 2020. https://doi.org/10.1093/aob/mcaa139.
Xia X, Fan X, Wei J, Feng H, Qu H, Xie D, Miller AJ, Xu G. Rice nitrate transporter OsNPF2.4 functions in low-affinity acquisition and long-distance transport. J Exp Bot. 2015;66:317–31.
Article
CAS
Google Scholar
Cubero-Font P, Maierhofer T, Jaslan J, Rosales MA, Espartero J, Díaz-Rueda P, Müller HM, Hürter AL, Al-Rasheid KAS, Marten I, Hedrich R, Colmenero-Flores JM, Geiger D. Silent S-type anion channel subunit SLAH1 gates SLAH3 open for chloride root-to-shoot translocation. Curr Biol. 2016;26:2213–20.
Article
CAS
Google Scholar
Wangsawang T, Chuamnakthong S, Kohnishi E, Sripichitt P, Sreewongchai T, Ueda A. A salinity-tolerant japonica cultivar has Na+ exclusion mechanism at leaf sheaths through the function of a Na+ transporter OsHKT1;4 under salinity stress. J Agron Crop Sci. 2018;204:274–84.
Article
CAS
Google Scholar
Jossier M, Kroniewicz L, Dalmas F, Le Thiec D, Ephritikhine G, Thomine S, Barbier-Brygoo H, Vavasseur A, Filleur S, Leonhardt N. The Arabidopsis vacuolar anion transporter, AtCLCc, is involved in the regulation of stomatal movements and contributes to salt tolerance. Plant J. 2010;64:563–76.
Article
CAS
Google Scholar
Nguyen CT, Agorio A, Jossier M, Depre S, Thomine S, Filleur S. Characterization of the chloride channel-like, AtCLCg, involved in chloride tolerance in Arabidopsis thaliana. Plant Cell Physiol. 2016;57:764–75.
Article
CAS
Google Scholar
Wei P, Che B, Shen L, Cui Y, Wu S, Cheng C, Liu F, Li M-W, Yu B, Lam H-M. Identification and functional characterization of the chloride channel gene, GsCLC-C2 from wild soybean. BMC Plant Biol. 2019;19:121.
Article
Google Scholar
Yoshida S, Forno DA, Cook JH, Gomes KA. Routine procedure for growing rice plants in culture solution. In: Yoshida S, Forno DA, Cook JH, Gomez KA, editors. Laboratory manual for physiological studies of rice. Los Baños: International Rice Research Institute; 1976. p. 61–6.
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25:402–8.
Article
CAS
Google Scholar