Kopriva S, Malagoli M, Takahashi H. Sulfur nutrition: impacts on plant development, metabolism, and stress responses. J Exp Bot. 2019;70:4069–73.
CAS
PubMed
Google Scholar
Nakai Y, Maruyama-Nakashita A. Biosynthesis of sulfur-containing small biomolecules in plants. Int J Mol Sci. 2020;21:3470.
PubMed Central
Google Scholar
Takahashi H, Kopriva S, Giordano M, Saito K, Hell R. Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol. 2011;62:157–84.
CAS
PubMed
Google Scholar
Hawkesford M, Horst W, Kichey T, Lambers H, Schjoerring J, Møller IS, et al. Chapter 6 - functions of macronutrients. In: Marschner P, editor. Marschner’s mineral nutrition of higher plants. 3rd ed. San Diego: Academic Press; 2012. p. 135–89. https://doi.org/10.1016/B978-0-12-384905-2.00006-6.
Chapter
Google Scholar
Aula L, Dhillon JS, Omara P, Wehmeyer GB, Freeman KW, Raun WR. World sulfur use efficiency for cereal crops. Agron J. 2019;111:2485–92.
CAS
Google Scholar
Bouranis DL, Malagoli M, Avice J-C, Bloem E. Advances in plant sulfur research. Plants. 2020;9:256.
CAS
PubMed Central
Google Scholar
Raffan S, Oddy J, Halford NG. The Sulphur response in wheat grain and its implications for acrylamide formation and food safety. Int J Mol Sci. 2020;21:3876.
PubMed Central
Google Scholar
White PJ, Bowen HC, Parmaguru P, Fritz M, Spracklen WP, Spiby RE, et al. Interactions between selenium and Sulphur nutrition in Arabidopsis thaliana. J Exp Bot. 2004;55:1927–37.
CAS
PubMed
Google Scholar
Briat JF, Rouached H, Tissot N, Gaymard F, Dubos C. Integration of P, S, Fe, and Zn nutrition signals in Arabidopsis thaliana: Potential involvement of PHOSPHATE STARVATION RESPONSE 1 (PHR1). Front Plant Sci. 2015;290.
Forieri I, Sticht C, Reichelt M, Gretz N, Hawkesford MJ, Malagoli M, et al. System analysis of metabolism and the transcriptome in Arabidopsis thaliana roots reveals differential co-regulation upon iron, sulfur and potassium deficiency. Plant Cell Environ. 2017;40:95–107.
CAS
PubMed
Google Scholar
Allahham A, Kanno S, Zhang L, Maruyama-Nakashita A. Sulfur deficiency increases phosphate accumulation, uptake, and transport in Arabidopsis thaliana. Int J Mol Sci. 2020;21:2971.
PubMed Central
Google Scholar
Takahashi H. Sulfate transport systems in plants: functional diversity and molecular mechanisms underlying regulatory coordination. J Exp Bot. 2019;70:4075–87.
CAS
PubMed
Google Scholar
Takahashi H, Yamazaki M, Sasakura N, Watanabe A, Leustek T, de A EJ, et al. Regulation of sulfur assimilation in higher plants: A sulfate transporter induced in sulfate-starved roots plays a central role in Arabidopsis thaliana. Proc Natl Acad Sci. 1997;94:11102–7.
CAS
PubMed
Google Scholar
Yoshimoto N, Takahashi H, Smith FW, Yamaya T, Saito K. Two distinct high-affinity sulfate transporters with different inducibilities mediate uptake of sulfate in Arabidopsis roots. Plant J. 2002;29:465–73.
CAS
PubMed
Google Scholar
Maruyama-Nakashita A. Metabolic changes sustain the plant life in low-sulfur environments. Curr Opin Plant Biol. 2017;39:144–51.
CAS
PubMed
Google Scholar
Maruyama-Nakashita A, Nakamura Y, Watanabe-Takahashi A, Inoue E, Yamaya T, Takahashi H. Identification of a novel cis-acting element conferring sulfur deficiency response in Arabidopsis roots. Plant J. 2005;42:305–14.
CAS
PubMed
Google Scholar
Bielecka M, Watanabe M, Morcuende R, Scheible W-R, Hawkesford MJ, Hesse H, et al. Transcriptome and metabolome analysis of plant sulfate starvation and resupply provides novel information on transcriptional regulation of metabolism associated with sulfur, nitrogen and phosphorus nutritional responses in Arabidopsis. Front Plant Sci. 2015;5. https://doi.org/10.3389/fpls.2014.00805.
Kumar S, Asif MH, Chakrabarty D, Tripathi RD, Dubey RS, Trivedi PK. Comprehensive analysis of regulatory elements of the promoters of rice sulfate transporter gene family and functional characterization of OsSul1;1 promoter under different metal stress. Plant Signal Behav. 2015;10:e990843.
PubMed
PubMed Central
Google Scholar
Maruyama-Nakashita A, Watanabe-Takahashi A, Inoue E, Yamaya T, Saito K, Takahashi H. Sulfur-responsive elements in the 3′-nontranscribed Intergenic region are essential for the induction of SULFATE TRANSPORTER 2;1 gene expression in Arabidopsis roots under sulfur deficiency. Plant Cell. 2015;27:1279–96.
CAS
PubMed
PubMed Central
Google Scholar
Celenza JL, Quiel JA, Smolen GA, Merrikh H, Silvestro AR, Normanly J, et al. The Arabidopsis ATR1 Myb transcription factor controls Indolic Glucosinolate homeostasis. Plant Physiol. 2005;137:253–62.
CAS
PubMed
PubMed Central
Google Scholar
Gigolashvili T, Yatusevich R, Berger B, Müller C, Flügge U-I. The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana. Plant J. 2007;51:247–61.
CAS
PubMed
Google Scholar
Lee B-R, Koprivova A, Kopriva S. The key enzyme of sulfate assimilation, adenosine 5′-phosphosulfate reductase, is regulated by HY5 in Arabidopsis. Plant J. 2011;67:1042–54.
CAS
PubMed
Google Scholar
Maruyama-Nakashita A, Nakamura Y, Tohge T, Saito K, Takahashi H. Arabidopsis SLIM1 is a central transcriptional regulator of plant sulfur response and metabolism. Plant Cell. 2006;18:3235–51.
CAS
PubMed
PubMed Central
Google Scholar
Wawrzyńska A, Sirko A. To control and to be controlled: understanding the Arabidopsis SLIM1 function in sulfur deficiency through comprehensive investigation of the EIL protein family. Front Plant Sci. 2014;5. https://doi.org/10.3389/fpls.2014.00575.
Jones-Rhoades MW, Bartel DP. Computational identification of plant MicroRNAs and their targets, Including a Stress-Induced miRNA. Mol Cell. 2004;14:787–99.
CAS
PubMed
Google Scholar
Kawashima CG, Yoshimoto N, Maruyama-Nakashita A, Tsuchiya YN, Saito K, Takahashi H, et al. Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types. Plant J. 2009;57:313–21.
CAS
PubMed
Google Scholar
Liang G, Yang F, Yu D. MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana. Plant J. 2010;62:1046–57.
CAS
PubMed
Google Scholar
Kawashima CG, Matthewman CA, Huang S, Lee B-R, Yoshimoto N, Koprivova A, et al. Interplay of SLIM1 and miR395 in the regulation of sulfate assimilation in Arabidopsis. Plant J. 2011;66:863–76.
CAS
PubMed
Google Scholar
Matthewman CA, Kawashima CG, Húska D, Csorba T, Dalmay T, Kopriva S. miR395 is a general component of the sulfate assimilation regulatory network in Arabidopsis. FEBS Lett. 2012;586:3242–8.
CAS
PubMed
Google Scholar
Huang X-Y, Chao D-Y, Koprivova A, Danku J, Wirtz M, Müller S, et al. Nuclear localised MORE SULPHUR ACCUMULATION1 epigenetically regulates Sulphur homeostasis in Arabidopsis thaliana. PLoS Genet. 2016;12. https://doi.org/10.1371/journal.pgen.1006298.
Watanabe M, Hoefgen R. Sulphur systems biology-making sense of omics data. J Exp Bot. 2019;70:4155–70.
CAS
PubMed
PubMed Central
Google Scholar
Nikiforova V, Freitag J, Kempa S, Adamik M, Hesse H, Hoefgen R. Transcriptome analysis of sulfur depletion in Arabidopsis thaliana: interlacing of biosynthetic pathways provides response specificity. Plant J. 2003;33:633–50.
CAS
PubMed
Google Scholar
Hirai MY, Fujiwara T, Awazuhara M, Kimura T, Noji M, Saito K. Global expression profiling of sulfur-starved Arabidopsis by DNA macroarray reveals the role of O-acetyl-l-serine as a general regulator of gene expression in response to sulfur nutrition. Plant J. 2003;33:651–63.
CAS
PubMed
Google Scholar
Maruyama-Nakashita A, Inoue E, Watanabe-Takahashi A, Yamaya T, Takahashi H. Transcriptome profiling of sulfur-responsive genes in Arabidopsis reveals global effects of sulfur nutrition on multiple metabolic pathways. Plant Physiol. 2003;132:597–605.
CAS
PubMed
PubMed Central
Google Scholar
Higashi Y, Hirai MY, Fujiwara T, Naito S, Noji M, Saito K. Proteomic and transcriptomic analysis of Arabidopsis seeds: molecular evidence for successive processing of seed proteins and its implication in the stress response to sulfur nutrition. Plant J. 2006;48:557–71.
CAS
PubMed
Google Scholar
Iyer-Pascuzzi AS, Jackson T, Cui H, Petricka JJ, Busch W, Tsukagoshi H, et al. Cell identity regulators link development and stress responses in the Arabidopsis root. Dev Cell. 2011;21:770–82.
CAS
PubMed
PubMed Central
Google Scholar
Aarabi F, Kusajima M, Tohge T, Konishi T, Gigolashvili T, Takamune M, et al. Sulfur deficiency–induced repressor proteins optimize glucosinolate biosynthesis in plants. Sci Adv. 2016;2:e1601087.
PubMed
PubMed Central
Google Scholar
Dong Y, Silbermann M, Speiser A, Forieri I, Linster E, Poschet G, et al. Sulfur availability regulates plant growth via glucose-TOR signaling. Nat Commun. 2017;8:1–10.
Google Scholar
Howarth JR, Parmar S, Jones J, Shepherd CE, Corol D-I, Galster AM, et al. Co-ordinated expression of amino acid metabolism in response to N and S deficiency during wheat grain filling. J Exp Bot. 2008;59:3675–89.
CAS
PubMed
PubMed Central
Google Scholar
Gupta S, Yadav BS, Raj U, Freilich S, Varadwaj PK. Transcriptomic analysis of soil Grown T. aestivum cv. Root to reveal the changes in expression of genes in response to multiple nutrients deficiency. Front. Plant Sci. 2017;8. https://doi.org/10.3389/fpls.2017.01025.
Yu Z, Juhasz A, Islam S, Diepeveen D, Zhang J, Wang P, et al. Impact of mid-season Sulphur deficiency on wheat nitrogen metabolism and biosynthesis of grain protein. Sci Rep. 2018;8:2499.
PubMed
PubMed Central
Google Scholar
Dai Z, Plessis A, Vincent J, Duchateau N, Besson A, Dardevet M, et al. Transcriptional and metabolic alternations rebalance wheat grain storage protein accumulation under variable nitrogen and sulfur supply. Plant J. 2015;83:326–43.
CAS
PubMed
Google Scholar
Henríquez-Valencia C, Arenas-M A, Medina J, Canales J. Integrative Transcriptomic Analysis Uncovers Novel Gene Modules That Underlie the Sulfate Response in Arabidopsis thaliana. Front Plant Sci. 2018;9:470.
Hirai MY, Yano M, Goodenowe DB, Kanaya S, Kimura T, Awazuhara M, et al. Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proc Natl Acad Sci. 2004;101:10205–10.
Hirai MY, Klein M, Fujikawa Y, Yano M, Goodenowe DB, Yamazaki Y, et al. Elucidation of gene-to-gene and metabolite-to-gene networks in arabidopsis by integration of metabolomics and transcriptomics. J Biol Chem. 2005;280:25590–5.
CAS
PubMed
Google Scholar
Zhang J, Sun X, Zhang Z, Ni Y, Zhang Q, Liang X, et al. Metabolite profiling of Arabidopsis seedlings in response to exogenous sinalbin and sulfur deficiency. Phytochemistry. 2011;72:1767–78.
CAS
PubMed
Google Scholar
Sung J, Baek S, Kim J, Kim XY, Lee Y, Lee S, et al. Responses of Primary Metabolites and Glucosinolates in Sulfur Deficient-Cabbage (Brassica rapa L. ssp. Pekinensis). J Plant Biochem Physiol. 2018;06. https://doi.org/10.4172/2329-9029.1000223.
Ghosson H, Schwarzenberg A, Jamois F, Yvin J-C. Simultaneous untargeted and targeted metabolomics profiling of underivatized primary metabolites in sulfur-deficient barley by ultra-high performance liquid chromatography-quadrupole/time-of-flight mass spectrometry. Plant Methods. 2018;14:62.
PubMed
PubMed Central
Google Scholar
D’Hooghe P, Escamez S, Trouverie J, Avice J-C. Sulphur limitation provokes physiological and leaf proteome changes in oilseed rape that lead to perturbation of Sulphur, carbon and oxidative metabolisms. BMC Plant Biol. 2013;13:23.
PubMed
PubMed Central
Google Scholar
D’Hooghe P, Dubousset L, Gallardo K, Kopriva S, Avice J-C, Trouverie J. Evidence for proteomic and metabolic adaptations associated with alterations of seed yield and quality in sulfur-limited Brassica napus L. Mol Cell Proteomics. 2014;13:1165–83.
PubMed
PubMed Central
Google Scholar
Yıldız M, Terzi H. Proteomic analysis of chromium stress and sulfur deficiency responses in leaves of two canola (Brassica napus L.) cultivars differing in Cr (VI) tolerance. Ecotoxicol Environ Saf. 2016;124:255–66.
PubMed
Google Scholar
Bagheri R, Ahmad J, Bashir H, Iqbal M, Qureshi MI. Changes in rubisco, cysteine-rich proteins and antioxidant system of spinach (Spinacia oleracea L.) due to Sulphur deficiency, cadmium stress and their combination. Protoplasma. 2017;254:1031–43.
CAS
PubMed
Google Scholar
Sønderby IE, Hansen BG, Bjarnholt N, Ticconi C, Halkier BA, Kliebenstein DJ. A systems biology approach identifies a R2R3 MYB gene subfamily with distinct and overlapping functions in regulation of aliphatic glucosinolates. PLoS One. 2007;2:e1322.
PubMed
PubMed Central
Google Scholar
Nikiforova VJ, Daub CO, Hesse H, Willmitzer L, Hoefgen R. Integrative gene-metabolite network with implemented causality deciphers informational fluxes of Sulphur stress response. J Exp Bot. 2005;56:1887–96.
CAS
PubMed
Google Scholar
Falkenberg B, Witt I, Zanor MI, Steinhauser D, Mueller-Roeber B, Hesse H, et al. Transcription factors relevant to auxin signalling coordinate broad-spectrum metabolic shifts including Sulphur metabolism. J Exp Bot. 2008;59:2831–46.
CAS
PubMed
PubMed Central
Google Scholar
Kimura S, Sinha N. Tomato (Solanum lycopersicum): a model fruit-bearing crop. Cold Spring Harb Protoc. 2008;2008.
Canene-Adams K, Campbell JK, Zaripheh S, Jeffery EH, Erdman JW. The tomato as a functional food. J Nutr. 2005;135:1226–30.
CAS
PubMed
Google Scholar
Alhendawi RA, Kirkby EA, Pilbeam DJ. Evidence that sulfur deficiency enhances molybdenum transport in xylem sap of tomato plants. J Plant Nutr. 2005;28:1347–53.
CAS
Google Scholar
Lopez J, Tremblay N, Voogt W, Dubé S, Gosselin A. Effects of varying sulphate concentrations on growth, physiology and yield of the greenhouse tomato. Sci Hortic. 1996;67:207–17.
CAS
Google Scholar
Hasan MK, Liu C-X, Pan Y-T, Ahammed GJ, Qi Z-Y, Zhou J. Melatonin alleviates low-sulfur stress by promoting sulfur homeostasis in tomato plants. Sci Rep. 2018;8:10182.
PubMed
PubMed Central
Google Scholar
Zuchi S, Cesco S, Varanini Z, Pinton R, Astolfi S. Sulphur deprivation limits Fe-deficiency responses in tomato plants. Planta. 2009;230:85–94.
CAS
PubMed
Google Scholar
Zuchi S, Watanabe M, Hubberten H-M, Bromke M, Osorio S, Fernie AR, et al. The interplay between sulfur and Iron nutrition in tomato. Plant Physiol. 2015;169:2624.
CAS
PubMed
PubMed Central
Google Scholar
Cerdá A, Martínez V, Caro M, Fernández FG. Effect of sulfur deficiency and excess on yield and sulfur accumulation in tomato plants. J Plant Nutr. 1984;7:1529–43.
Google Scholar
Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34:525–7.
CAS
PubMed
Google Scholar
Marini F, Binder H. pcaExplorer: an R/Bioconductor package for interacting with RNA-seq principal components. BMC Bioinformatics. 2019;20:331.
PubMed
PubMed Central
Google Scholar
Pimentel H, Bray NL, Puente S, Melsted P, Pachter L. Differential analysis of RNA-seq incorporating quantification uncertainty. Nat Methods. 2017;14:687–90.
CAS
PubMed
Google Scholar
Li L, Stoeckert CJ, Roos DS. OrthoMCL: identification of Ortholog groups for eukaryotic genomes. Genome Res. 2003;13:2178–89.
CAS
PubMed
PubMed Central
Google Scholar
Van Bel M, Diels T, Vancaester E, Kreft L, Botzki A, Van de Peer Y, Coppens F, Vandepoele K. PLAZA 4.0: an integrative resource for functional, evolutionary and comparative plant genomics. Nucleic Acids Res. 2018;46:D1190–6.
Kanno S, Cuyas L, Javot H, Bligny R, Gout E, Dartevelle T, et al. Performance and limitations of phosphate quantification: guidelines for plant biologists. Plant Cell Physiol. 2016;57:690–706.
CAS
PubMed
Google Scholar
Duan K, Yi K, Dang L, Huang H, Wu W, Wu P. Characterization of a sub-family of Arabidopsis genes with the SPX domain reveals their diverse functions in plant tolerance to phosphorus starvation. Plant J. 2008;54:965–75.
CAS
PubMed
Google Scholar
Okazaki Y, Otsuki H, Narisawa T, Kobayashi M, Sawai S, Kamide Y, et al. A new class of plant lipid is essential for protection against phosphorus depletion. Nat Commun. 2013;4.
Sun Y, Jain A, Xue Y, Wang X, Zhao G, Liu L, et al. OsSQD1 at the crossroads of phosphate and sulfur metabolism affects plant morphology and lipid composition in response to phosphate deprivation. Plant Cell Environ. 2020;43:1669–90.
CAS
PubMed
Google Scholar
Langfelder P, Zhang B, Horvath S. Defining clusters from a hierarchical cluster tree: the dynamic tree cut package for R. Bioinformatics. 2008;24:719–20.
CAS
PubMed
Google Scholar
Schwacke R, Ponce-Soto GY, Krause K, Bolger AM, Arsova B, Hallab A, et al. MapMan4: a refined protein classification and annotation framework applicable to multi-Omics data analysis. Mol Plant. 2019;12:879–92.
CAS
PubMed
Google Scholar
Tian F, Yang D-C, Meng Y-Q, Jin J, Gao G. PlantRegMap: charting functional regulatory maps in plants. Nucleic Acids Res. 2020;48:D1104–13.
PubMed
Google Scholar
Ivakov A, Flis A, Apelt F, Fünfgeld M, Scherer U, Stitt M, et al. Cellulose synthesis and cell expansion are regulated by different mechanisms in growing arabidopsis hypocotyls. Plant Cell. 2017;29:1305–15.
CAS
PubMed
PubMed Central
Google Scholar
Ogden M, Hoefgen R, Roessner U, Persson S, Khan G. Feeding the walls: how does nutrient availability regulate Cell Wall composition? Int J Mol Sci. 2018;19:2691.
PubMed Central
Google Scholar
Miedes E, Suslov D, Vandenbussche F, Kenobi K, Ivakov A, Van Der Straeten D, et al. Xyloglucan endotransglucosylase/hydrolase (XTH) overexpression affects growth and cell wall mechanics in etiolated Arabidopsis hypocotyls. J Exp Bot. 2013;64:2481–97.
CAS
PubMed
Google Scholar
Osato Y, Yokoyama R, Nishitani K. A principal role for AtXTH18 in Arabidopsis thaliana root growth: a functional analysis using RNAi plants. J Plant Res. 2006;119:153–62.
CAS
PubMed
Google Scholar
Liu Y-B, Lu S-M, Zhang J-F, Liu S, Lu Y-T. A xyloglucan endotransglucosylase/hydrolase involves in growth of primary root and alters the deposition of cellulose in Arabidopsis. Planta. 2007;226:1547–60.
CAS
PubMed
Google Scholar
Sasidharan R, Chinnappa CC, Staal M, Elzenga JTM, Yokoyama R, Nishitani K, et al. Light quality-mediated petiole elongation in Arabidopsis during shade avoidance involves Cell Wall modification by Xyloglucan Endotransglucosylase/hydrolases. Plant Physiol. 2010;154:978.
CAS
PubMed
PubMed Central
Google Scholar
Ohba T, Takahashi S, Asada K. Alteration of fruit characteristics in transgenic tomatoes with modified expression of a xyloglucan endotransglucosylase/hydrolase gene. Plant Biotechnol. 2011;28:25–32.
CAS
Google Scholar
Maris A, Suslov D, Fry SC, Verbelen J-P, Vissenberg K. Enzymic characterization of two recombinant xyloglucan endotransglucosylase/hydrolase (XTH) proteins of Arabidopsis and their effect on root growth and cell wall extension. J Exp Bot. 2009;60:3959–72.
CAS
PubMed
Google Scholar
Kirschbaum MUF. Does enhanced photosynthesis enhance growth? Lessons learned from CO2 enrichment studies. Plant Physiol. 2011;155:117–24.
CAS
PubMed
Google Scholar
Giordano M, Pezzoni V, Hell R. Strategies for the allocation of resources under sulfur limitation in the green alga Dunaliella salina. Plant Physiol. 2000;124:857–64.
CAS
PubMed
PubMed Central
Google Scholar
Davies JP, Yildiz FH, Grossman A. Sac1, a putative regulator that is critical for survival of Chlamydomonas reinhardtii during sulfur deprivation. EMBO J. 1996;15:2150–9.
CAS
PubMed
PubMed Central
Google Scholar
Hamburger D, Rezzonico E, Petétot JMDC, Somerville C, Poirier Y. Identification and characterization of the Arabidopsis PHO1 gene involved in phosphate loading to the xylem. Plant Cell. 2002;14:889–902.
CAS
PubMed
PubMed Central
Google Scholar
Leggewie G, Willmitzer L, Riesmeier JW. Two cDNAs from potato are able to complement a phosphate uptake-deficient yeast mutant: identification of phosphate transporters from higher plants. Plant Cell. 1997;9:381–92.
CAS
PubMed
PubMed Central
Google Scholar
Daram P, Brunner S, Persson BL, Amrhein N, Bucher M. Functional analysis and cell-specific expression of a phosphate transporter from tomato. Planta. 1998;206:225–33.
CAS
PubMed
Google Scholar
Rouached H. Multilevel coordination of phosphate and sulfate homeostasis in plants. Plant Signal Behav. 2011;6:952–5.
CAS
PubMed
PubMed Central
Google Scholar
Wawrzyńska A, Sirko A. Proteasomal degradation of proteins is important for the proper transcriptional response to sulfur deficiency conditions in plants. Plant Cell Physiol. 2020. https://doi.org/10.1093/pcp/pcaa076.
Haga N, Kobayashi K, Suzuki T, Maeo K, Kubo M, Ohtani M, et al. Mutations in MYB3R1 and MYB3R4 cause pleiotropic developmental defects and preferential down-regulation of multiple G2/M-specific genes in Arabidopsis. Plant Physiol. 2011;157:706–17.
CAS
PubMed
PubMed Central
Google Scholar
Ito M, Iwase M, Kodama H, Lavisse P, Komamine A, Nishihama R, et al. A novel cis-acting element in promoters of plant B-type cyclin genes activates M phase-specific transcription. Plant Cell. 1998;10:331–41.
CAS
PubMed
PubMed Central
Google Scholar
Danisman S. TCP transcription factors at the interface between environmental challenges and the plant’s growth responses. Front Plant Sci. 2016;7:1930.
PubMed
PubMed Central
Google Scholar
Danisman S, van Dijk ADJ, Bimbo A, van der Wal F, Hennig L, de Folter S, et al. Analysis of functional redundancies within the Arabidopsis TCP transcription factor family. J Exp Bot. 2013;64:5673–85.
CAS
PubMed
PubMed Central
Google Scholar
Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962;15:473–97.
CAS
Google Scholar
Yoshimoto N, Inoue E, Watanabe-Takahashi A, Saito K, Takahashi H. Posttranscriptional regulation of high-affinity sulfate transporters in Arabidopsis by sulfur nutrition. Plant Physiol. 2007;145:378–88.
CAS
PubMed
PubMed Central
Google Scholar
Williams CR, Baccarella A, Parrish JZ, Kim CC. Trimming of sequence reads alters RNA-Seq gene expression estimates. BMC Bioinformatics. 2016;17. https://doi.org/10.1186/s12859-016-0956-2.
Maere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics. 2005;21:3448–9.
CAS
PubMed
Google Scholar
Lin G, Chai J, Yuan S, Mai C, Cai L, Murphy RW, et al. VennPainter: a tool for the comparison and identification of candidate genes based on Venn diagrams. PLoS One. 2016;11:e0154315.
PubMed
PubMed Central
Google Scholar
Ma C, Wang X. Application of the Gini correlation coefficient to infer regulatory relationships in transcriptome analysis. Plant Physiol. 2012;160:192–203.
CAS
PubMed
PubMed Central
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.
CAS
PubMed
PubMed Central
Google Scholar
Zhao S, Fernald RD. Comprehensive algorithm for quantitative real-time polymerase chain reaction. J Comput Biol J Comput Mol Cell Biol. 2005;12:1047–64.
CAS
Google Scholar
Tabatabai MA, Bremner JM. A simple Turbidimetric method of determining Total sulfur in plant Materials1. Agron J. 1970;62:805–6.
CAS
Google Scholar