Zhang LQ, Jiang S, Meng JJ, An HS, Zhang XY. First report of leaf spot caused by Nigrospora oryzae on blueberry in Shanghai. China Plant Dis. 2019;103(9):2473..
Article
CAS
Google Scholar
Fischer DL, Vignolo GK, Aldrighi MG, Fachinello JC, Antunes LEC. Rooting of blueberry hardwood cuttings as affected by wood type. Acta Hort. 2014;926:273–8.
Google Scholar
Fischer DLO, Fernandes GW, Borges EA, Piana CFB, Pasa MS. Rooting of blueberry hardwood cuttings treated with indolebutyric acid (IBA) and pro-rooting. Acta Hort. 2016;1117:325–30.
Article
Google Scholar
Debnath SC. Influence of indole-3-butyric acid and propagation method on growth and development of in vitro- and ex vitro-derived lowbush blueberry plants. Plant Growth Regul. 2007;51(3):245–53.
Article
CAS
Google Scholar
Nag S, Saha K, Choudhuri MA. Role of auxin and polyamines in adventitious root formation in relation to changes in compounds involved in rooting. J Plant Growth Regul. 2001;20:182–94.
Article
CAS
Google Scholar
Braha S, Rama P. The effect of indolebutyric acid and naphthalene acetic acid of adventitious root formation to green cuttings in blueberry cv. (Vaccinium corymbosum L.). Int J Sci Res. 2016;5(7):876–9.
Google Scholar
An H, Meng J, Xu F, Luo J, Jiang S, Wang X, Shi C, Zhou B, Zhang X. Rooting ability of hardwood cuttings in highbush blueberry (Vaccinium corymbosum L.) under different indole-butyric acid concentrations. HortSci. 2019;54(2):194–9.
Article
Google Scholar
Vignolo GK, Fischer DLDO, Araujo VF, Kunde RJ, Antunes LEC. Rooting of hardwood cuttings of three blueberry cultivars with different concentrations of IBA. Ciênc Rural. 2012;42:795–800.
Article
Google Scholar
Ludwig-Müller J, Vertocnik A, Town CD. Analysis of indole-3-butyric acid-induced adventitious root formation on Arabidopsis stem segments. J Exp Bot. 2005;56(418):2095–105.
Article
PubMed
Google Scholar
Druege U, Franken P, Lischewski S, Ahkami AH, Zerche S, Hause B, Hajirezaei MR. Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings. Front Plant Sci. 2014;5:494.
Article
PubMed
PubMed Central
Google Scholar
Fukuda Y, Hirao T, Mishima K, Ohira M, Hiraoka Y, Takahashi M, Watanabe A. Transcriptome dynamics of rooting zone and aboveground parts of cuttings during adventitious root formation in Cryptomeria japonica D. Don BMC Plant Biol. 2018;18:201.
Article
CAS
PubMed
Google Scholar
Zhang Y, Xiao Z, Zhan C, Liu M, Xia W, Wang N. Comprehensive analysis of dynamic gene expression and investigation of the roles of hydrogen peroxide during adventitious rooting in poplar. BMC Plant Biol. 2019;19:99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li SW, Xue L, Xu S, Feng H, An L. Mediators, genes and signaling in adventitious rooting. Bot Rev. 2009;75:230–47.
Article
Google Scholar
Druege U, Franken P, Hajirezaei MR. Plant hormone homeostasis, signaling, and function during adventitious root formation in cuttings. Front Plant Sci. 2016;7:381.
Article
PubMed
PubMed Central
Google Scholar
Villacorta-Martin C, Sanchez-Garcia AB, Villanova J, Cano A, van de Rhee M, de Haan J, Acosta M, Passarinho P, Perez-Perez JM. Gene expression profiling during adventitious root formation in carnation stem cuttings. BMC Genomics. 2015;16:789.
Article
PubMed
PubMed Central
CAS
Google Scholar
da Costa CT, de Almeida MR, Ruedell CM, Schwambach J, Maraschin FS, Fett-Neto AG. When stress and development go hand in hand: main hormonal controls of adventitious rooting in cuttings. Front Plant Sci. 2013;4:133.
Article
PubMed
PubMed Central
Google Scholar
Pacurar DI, Perrone I, Bellini C. Auxin is a central player in the hormone cross-talks that control adventitious rooting. Physiol Plantarum. 2014;151(1):83–96.
Article
CAS
Google Scholar
Celik H, Odabas MS. Mathematical modeling of the indole-3-butyric acid applications on rooting of northern highbush blueberry (Vaccinium corymbosum L.) softwood-cuttings. Acta Physiol Plant. 2009;31(2):295–9.
Article
CAS
Google Scholar
Li X, Sun H, Pei J, Dong Y, Wang F, Chen H, Sun Y, Wang N, Li H, Li Y. De novo sequencing and comparative analysis of the blueberry transcriptome to discover putative genes related to antioxidants. Gene. 2012;511(1):54–61.
Article
CAS
PubMed
Google Scholar
Li X, Luo J, Yan T, Xiang L, Jin F, Qin D, Sun C, Xie M. Deep sequencing-based analysis of the cymbidium ensifolium floral transcriptome. PLoS One. 2013;8(12):e85480.
Article
PubMed
PubMed Central
CAS
Google Scholar
Miller AC, Obholzer ND, Shah AN, Megason SG, Moens CB. RNA-seq-based mapping and candidate identification of mutations from forward genetic screens. Genome Res. 2013;23(4):679–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin H, Wan YW, Liu Z. Comprehensive evaluation of RNA-seq quantification methods for linearity. BMC Bioinformatics. 2017;18(suppl 4):117.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lin Y, Wang Y, Li B, Tan H, Li D, Li L, Liu X, Han J, Meng X. Comparative transcriptome analysis of genes involved in anthocyanin synthesis in blueberry. Plant Physiol Biochem. 2018;127:561–72.
Article
CAS
PubMed
Google Scholar
Rowland LJ, Alkharouf N, Darwish O, Ogden EL, Polashock JJ, Bassil NV, Main D. Generation and analysis of blueberry transcriptome sequences from leaves, developing fruit, and flower buds from cold acclimation through deacclimation. BMC Plant Biol. 2012;12:46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gupta V, Estrada AD, Blakley I, Reid R, Patel K, Meyer MD, Andersen SU, Brown AF, Lila MA, Loraine AE. RNA-seq analysis and annotation of a draft blueberry genome assembly identifies candidate genes involved in fruit ripening, biosynthesis of bioactive compounds and stage-specific alternative splicing. GigaScience. 2015;4(1):5.
Article
PubMed
PubMed Central
Google Scholar
Song G, Chen Q. Comparative transcriptome analysis of nonchilled, chilled, and late-pink bud reveals flowering pathway genes involved in chilling-mediated flowering in blueberry. BMC Plant Biol. 2018;18(1):98.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu S, Wang J, Wang L, Wang X, Xue Y, Wu P, Shou H. Adventitious root formation in rice requires OsGNOM1 and is mediated by the OsPINs family. Cell Res. 2009;19(9):1110–9.
Article
CAS
PubMed
Google Scholar
Vidoz ML, Loreti E, Mensuali A, Alpi A, Perata P. Hormonal interplay during adventitious root formation in flooded tomato plants. Plant J. 2010;63(4):551–62.
Article
CAS
PubMed
Google Scholar
van der Krieken WM, Breteler H, Visser MHM, Mavridou D. The role of the conversion of IBA into IAA on root regeneration in apple: introduction of a test system. Plant Cell Rep. 1993;12(4):203–6.
Article
PubMed
Google Scholar
van der Krieken WM, Breteler H, Visser MHM. The effect of the conversion of indolebutyric acid into indoleacetic acid on root formation on microcuttings of Malus. Plant Cell Physiol. 1992;33(6):709–13.
Google Scholar
Kumar PP. Regulation of biotic and abiotic stress responses by plant hormones. Plant Cell Rep. 2013;32(7):943.
Article
CAS
PubMed
Google Scholar
Steffens B, Wang J, Sauter M. Interactions between ethylene, gibberellin and abscisic acid regulate emergence and growth rate of adventitious roots in Deepwater rice. Planta. 2006;223(3):604–12.
Article
CAS
PubMed
Google Scholar
Guan L, Tayengwa R, Cheng Z, Peer WA, Murphy AS, Zhao M. Auxin regulates adventitious root formation in tomato cuttings. BMC Plant Biol. 2019;19:435.
Article
PubMed
PubMed Central
CAS
Google Scholar
Debi BR, Taketa S, Ichii M. Cytokinin inhibits lateral root initiation but stimulates lateral root elongation in rice (Oryza sativa). J Plant Physiol. 2005;162(5):507–15.
Article
CAS
Google Scholar
Laplaze L, Benkova E, Casimiro I, Maes L, Vanneste S, Swarup R, Weijers D, Calvo V, Parizot B, Herrera-Rodriguez MB, Offringa R, Graham N, Doumas P, Friml J, Bogousz D, Beeckman T, Bennett M. Cytokinins act directly on lateral root founder cells to inhibit root initiation. Plant Cell. 2007;19(12):3889–900.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng L, Liu H, Han Y, Li S. Transcriptome analysis of miRNAs expression reveals novel insights into adventitious root formation in lotus (Nelumbo nucifera Gaertn). Mol Biol Rep. 2019;46:2893–905.
Article
CAS
Google Scholar
Torres TT, Metta M, Ottenwalder B, Schlotterer C. Gene expression profiling by massively parallel sequencing. Genome Res. 2008;18(1):172–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei K, Wang LY, Wu LY, Zhang CC, Li HL, Tan LQ, Cao HL, Cheng H. Transcriptome analysis of indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.). Plos One. 2014;9(9):e107201.
Article
PubMed
PubMed Central
CAS
Google Scholar
Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R, Graham N, Inze D, Sandberg G, Casero PJ, Bennett M. Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell. 2001;13(4):843–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang H, Casero P, Sandberg G, Bennett MJ. Dissecting Arabidopsis lateral root development. Trends Plant Sci. 2003;8(4):165–71.
Article
CAS
PubMed
Google Scholar
Guilfoyle TJ, Hagen G. Auxin response factors. Curr Opin Plant Biol. 2007;10(5):453–60.
Article
CAS
PubMed
Google Scholar
Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Lui A, Nguyen D, Onodera C, Quach H, Smith A, Yu G, Theologis A. Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell. 2005;17(2):444–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M. ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell. 2007;19(1):118–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang X, Bao YN, Wang B, Liu LJ, Chen J, Dai LJ, Peng DX. Identification and expression of Aux/IAA, ARF, and LBD family transcription factors in Boehmeria nivea. Biol Plantarum. 2016;60:244–50.
Article
CAS
Google Scholar
Lee HW, Kim NY, Lee DJ, Kim J. LBD18/ASL20 regulates lateral root formation in combination with LBD16/ASL18 downstream of ARF7 and ARF 19 in Arabidopsis. Plant Physiol. 2009;151(3):1377–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu W, Yu J, Ge Y, Qin P, Xu L. Pivotal role of LBD16 in root and root-like organ initiation. Cell Mol Life Sci. 2018;75:3329–38.
Article
CAS
PubMed
Google Scholar
Tiwari SB, Hagen G, Guilfoyle T. The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell. 2003;15(2):533–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tiwari SB, Hagen G, Guilfoyle TJ. Aux/IAA proteins contain a potent transcriptional repression domain. Plant Cell. 2004;16(2):533–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fukaki H, Tasaka M. Hormone interactions during lateral root formation. Plant Mol Biol. 2009;69(4):437–49.
Article
CAS
PubMed
Google Scholar
Muday GK, DeLong A. Polar auxin transport: controlling where and how much. Trends Plant Sci. 2001;6(11):535–42.
Article
CAS
PubMed
Google Scholar
Friml J, Palme K. Polar auxin transport_old questions and new concepts? Plant Mol Biol. 2002;49(3–4):273–84.
Article
CAS
PubMed
Google Scholar
Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schulz B, Feldmann KA. Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science. 1996;273(5277):948–50.
Article
CAS
PubMed
Google Scholar
Friml J, Benkova E, Blilou I, Wisniewska J, Hamann T, Ljung K, Woody S, Sandberg G, Scheres B, Jurgens G, Palme K. AtPIN4 mediates sink-driven auxin gradients and patterning in Arabidopsis roots. Cell. 2002;108(5):661–73.
Article
CAS
PubMed
Google Scholar
Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature. 2005;433(7021):39–44.
Article
CAS
PubMed
Google Scholar
Mignolli F, Mariotti L, Picciarelli P, Vidoz ML. Differential auxin transport and accumulation in the stem base lead to profuse adventitious root primordial formation in the aerial roots (aer) mutant of tomato (Solanum lycopersicum L.). J Plant Physiol. 2017;213:55–65.
Article
CAS
PubMed
Google Scholar
Xu M, Zhu L, Shou H, Wu P. A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice. Plant Cell Physiol. 2005;46(10):1674–81.
Article
CAS
PubMed
Google Scholar
Feraru E, Vosolsobe S, Feraru MI, Petrasek J, Kleine-Vehn J. Evolution and structural diversification of PILS putative auxin carriers in plant. Front Plant Sci. 2012;3:227.
PubMed
PubMed Central
Google Scholar
Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G, Friml J. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell. 2003;115(5):591–602.
Article
CAS
PubMed
Google Scholar
Bellini C, Pacurarm DI, Perrone I. Adventitious roots and lateral roots: similarities and differences. Annu Rev Plant Biol. 2014;65:639–66.
Article
CAS
PubMed
Google Scholar
Smith DL, Fedoroff NV. LRP1, a gene expressed in lateral and adventitious root primordial of Arabidopsis. Plant Cell. 1995;7(6):735–45.
CAS
PubMed
PubMed Central
Google Scholar
Ermel FF, Vizoso S, Charpentier JP, Jay-Allemand C, Catesson AM, Couee I. Mechanisms of primordium formation during adventitious root development from walnut cotyledon explants. Planta. 2000;211(4):563–74.
Article
CAS
PubMed
Google Scholar
Zhang Y, von Behrens I, Zimmermann R, Ludwig Y, Hey S, Hochholdinger F. Lateral root primordial 1 of maize acts as a transcriptional activator in auxin signaling downstream of the AUX/IAA gene rootless with undetectable meristem 1. J Exp Bot. 2015;66(13):3855–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krichevsky A, Zaltsman A, Kozlovsky SV, Tian GW, Citovsky V. Regulation of root elongation by histone acetylation in Arabidopsis. J Mol Biol. 2009;385(1):45–50.
Article
CAS
PubMed
Google Scholar
Hong JK, Kim JA, Kim JS, Lee SI, Koo BS, Lee YH. Overexpression of Brassica rapa SHI-RELATED SEQUENCE genes suppresses growth and development in Arabidopsis thaliana. Biotechnol Lett. 2012;34(8):1561–9.
Article
CAS
PubMed
Google Scholar
An Z, Liu Y, Ou Y, Li J, Zhang B, Sun D, Sun Y, Tang W. Regulation of stability of RGF1 receptor by the ubiquitin-specific proteases UBP12/UBP13 is critical for root meristem maintenance. PNAS. 2018;115(5):1123–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shinohara H, Mori A, Yasue N, Sumida K, Matsubayashi Y. Identification of three LRR-RKs involved in perception of root meristem growth factor in Arabidopsis. PNAS. 2016;113(14):3897–902.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee J, Han CT, Hur Y. Molecular characterization of the Brassica rapa auxin-repressed, superfamily genes, BrARP1 and BrDRM1. Mol Biol Rep. 2013;40(1):197–209.
Article
CAS
PubMed
Google Scholar
Niu Q, Zong Y, Qian M, Yang F, Teng Y. Simultaneous quantitative determination of major plant hormones in pear flowers and fruit by UPLC/ESI-MS/MS. Anal Methods. 2014;6:1766.
Article
CAS
Google Scholar
Powell S, Szklarczyk D, Trachana K, Roth A, Kuhn M, Muller J, Arnold R, Rattei T, Letunic I, Doerks T, Jensen LJ, von Mering C, Bork P. eggNOG v3.0: orthologous groups covering 1133 organisms at 41 different taxonomic ranges. Nucleic Acids Res. 2012;40(D1):D284–9.
Article
CAS
PubMed
Google Scholar
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004;32(suppl1):D277–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Conesa A, Gotz S. Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics. 2008;2008:619832.
Article
PubMed
CAS
Google Scholar
Jiang S, Luo J, Xu F, Zhang X. Transcriptome analysis reveals candidate genes involved in gibberellins-induced fruit setting in triploid loquat (Eriobotrya japonica). Front Plant Sci. 2016;7:1924.
PubMed
PubMed Central
Google Scholar