Yao LH, Jiang YM, Shi J, Tomás-Barberán FA, Datta N, Singanusong R, Chen SS. Flavonoids in food and their health benefits. Plant Foods Hum Nutr. 2004;59:113–22.
Article
CAS
PubMed
Google Scholar
Owens D, Alerding A, Crosby K, Bandara A, Westwood J, Winkel B. Functional analysis of a predicted flavonol synthase gene family in Arabidopsis. Plant Physiol. 2008;147:1046–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Veitch N, Grayer R. Flavonoids and their glycosides, including anthocyanins. Nat Prod Rep. 2011;28:1626–95.
Article
CAS
PubMed
Google Scholar
Byrne P, Darrah L, Snook M, Wiseman B, Widstrom N, Moellenbeck D, Barry B. Maize silk-browning, maysin content, and antibiosis to the corn earworm, Helicoverpa zea (Boddie). Maydica. 1996;41:13–8.
Google Scholar
Choi J, Islam M, Ali M, Kim E, Kim Y, Jung H. Effects of C-glycosylation on anti-diabetic, anti-Alzheimer's disease and anti-inflammatory potential of apigenin. Food Chem Toxicol. 2014;64:27–33.
Article
CAS
PubMed
Google Scholar
Czemmel S, Stracke R, Weisshaar B, Cordon N, Harris N, Walker A, Robinson SP, Bogs J. The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synthesis in developing grape berries. Plant Physiol. 2009;151:1513–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuhn B, Geisler M, Bigler L, Ringli C. Flavonols accumulate asymmetrically and affect auxin transport in Arabidopsis. Plant Physiol. 2011;156:585–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stracke R, Jahns O, Keck M, Tohge T, Niehaus K, Fernie A, Weisshaar B. Analysis of PRODUCTION OF FLAVONOL GLYCOSIDES-dependent flavonol glycoside accumulation in Arabidopsis thaliana plants reveals MYB11-, MYB12- and MYB111-independent flavonol glycoside accumulation. New Phytol. 2010;188:985–1000.
Article
CAS
PubMed
Google Scholar
Mondal S, Roy S. Genome-wide sequential, evolutionary, organizational and expression analyses of phenylpropanoid biosynthesis associated MYB domain transcription factors in Arabidopsis. J Biomol Struct Dyn. 2018;36:1577–601.
Article
CAS
PubMed
Google Scholar
Li S. Transcriptional control of flavonoid biosynthesis: fine-tuning of the MYB-bHLH-WD40 (MBW) complex. Plant Signal Behav. 2014;9:e27522.
Article
PubMed
PubMed Central
CAS
Google Scholar
Franceschi V, Grimes H. Induction of soybean vegetative storage proteins and anthocyanins by low-level atmospheric methyl jasmonate. Proc Natl Acad Sci U S A. 1991;88:6745–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feys B, Benedetti C, Penfold C, Turner J. Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell. 1994;6:751–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Liu W, Jiang H, Mao Z, Wang N, Jiang S, Xu H, Yang G, Zhang Z, Chen X. The R2R3-MYB transcription factor MdMYB24-like is involved in methyl jasmonate-induced anthocyanin biosynthesis in apple. Plant Physiol Biochem. 2019;139:273–282.
Devoto A, Ellis C, Magusin A, Chang H, Chilcott C, Zhu T, Turner JG. Expression profiling reveals COI1 to be a key regulator of genes involved in wound- and methyl jasmonate-induced secondary metabolism, defence, and hormone interactions. Plant Mol Biol. 2005;58:497–513.
Article
CAS
PubMed
Google Scholar
Loreti E, Povero G, Novi G, Solfanelli C, Alpi A, Perata P. Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis. New Phytol. 2008;179:1004–16.
Article
CAS
PubMed
Google Scholar
Shan X, Zhang Y, Peng W, Wang Z, Xie D. Molecular mechanism for jasmonate-induction of anthocyanin accumulation in Arabidopsis. J Exp Bot. 2009;60:3849–60.
Article
CAS
PubMed
Google Scholar
Peng Z, Han C, Yuan L, Zhang K, Huang H, Ren C. Brassinosteroid enhances jasmonate-induced anthocyanin accumulation in Arabidopsis seedlings. J Integr Plant Biol. 2011;53:632–40.
Article
CAS
PubMed
Google Scholar
Gabetta B, Fuzzati N, Griffini A, Lolla E, Pace R, Ruffilli T, Peterlongo F. Characterization of proanthocyanidins from grape seeds. Fitoterapia. 2000;71:162–75.
Article
CAS
PubMed
Google Scholar
Dixon R, Xie D, Sharma S. Proanthocyanidins - a final frontier in flavonoid research? New Phytol. 2005;165:9–28.
Article
CAS
PubMed
Google Scholar
Santos-Buelga C, Scalbert A. Proanthocyanidins and tannin-like compounds - nature, occurrence, dietary intake and effects on nutrition and health. J Sci Food Agric. 2000;80:1094–117.
Article
CAS
Google Scholar
Chukwumah Y, Walker L, Verghese M. Peanut skin color: a biomarker for total polyphenolic content and antioxidative capacities of peanut cultivars. Int J Mol Sci. 2009;10:4941–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wan L, Li B, Pandey M, Wu Y, Lei Y, Yan L, Dai X, Jiang H, Zhang J, Wei G, Varshney RK, Liao B. Transcriptome analysis of a new peanut seed coat mutant for the physiological regulatory mechanism involved in seed coat cracking and pigmentation. Front Plant Sci. 2016;7:1491.
Article
PubMed
PubMed Central
Google Scholar
Wan L, Li B, Lei Y, Yan L, Ren X, Chen Y, Dai X, Jiang H, Zhang J, Guo W, Chen A, Liao B. Mutant Transcriptome Sequencing Provides Insights into Pod Development in Peanut (Arachis hypogaea L.). Front Plant Sci. 2017;8:1900.
Article
PubMed
PubMed Central
Google Scholar
Vishwanath S, Delude C, Domergue F, Rowland O. Suberin: biosynthesis, regulation, and polymer assembly of a protective extracellular barrier. Plant Cell Rep. 2015;34:573–86.
Article
CAS
PubMed
Google Scholar
Li-Beisson Y, Shorrosh B, Beisson F, Andersson M, Arondel V, Bates P, Baud S, Bird D, Debono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu C, Zallot R, Ohlrogge J. Acyl-lipid metabolism. Arabidopsis Book. 2013;11:e0161.
Article
PubMed
PubMed Central
Google Scholar
Kuhn N, Guan L, Dai Z, Wu B, Lauvergeat V, Gomesm E, Li SH, Godoy F, Arce-Johnson P, Delrot S. Berry ripening: recently heard through the grapevine. J Exp Bot. 2014;65:4543–59.
Article
CAS
PubMed
Google Scholar
Ai T, Naing A, Arun M, Lim S, Kim C. Sucrose-induced anthocyanin accumulation in vegetative tissue of Petunia plants requires anthocyanin regulatory transcription factors. Plant Sci. 2016;252:144–50.
Article
CAS
PubMed
Google Scholar
Bihmidine S, Julius B, Dweikat I, Braun D. Tonoplast sugar transporters (SbTSTs) putatively control sucrose accumulation in sweet sorghum stems. Plant Signal Behav. 2016;11:e1117721.
Article
PubMed
CAS
Google Scholar
Milne R, Byrt C, Patrick J, Grof C. Are sucrose transporter expression profiles linked with patterns of biomass partitioning in sorghum phenotypes? Front Plant Sci. 2013;4:223.
Article
PubMed
PubMed Central
Google Scholar
Bihmidine S, Bake R, Hoffner C, Braun D. Sucrose accumulation in sweet sorghum stems occurs by apoplasmic phloem unloading and does not involve differential sucrose transporter expression. BMC Plant Biol. 2015;15:186.
Article
PubMed
PubMed Central
CAS
Google Scholar
Leach K, Tran T, Slewinski T, Meeley R, Braun D. Sucrose transporter2 contributes to maize growth, development, and crop yield. J Integr Plant Biol. 2017;59:390–408.
Article
CAS
PubMed
Google Scholar
Eom J, Chen L, Sosso D, Julius B, Lin I, Qu X, Braun DM, Frommer WB. SWEETs, transporters for intracellular and intercellular sugar translocation. Curr Opin Plant Biol. 2015;25:53–62.
Article
CAS
PubMed
Google Scholar
Tao Y, Cheung L, Li S, Eom J, Chen L, Xu Y, Perry K, Frommer WB, Feng L. Structure of a eukaryotic SWEET transporter in a homotrimeric complex. Nature. 2015;527:259–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mizuno H, Kasuga S, Kawahigashi H. The sorghum SWEET gene family: stem sucrose accumulation as revealed through transcriptome profiling. Biotechnol Biofuels. 2016;9:127.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rai A, Umashankar S, Rai M, Kiat L, Bing J, Swarup S. Coordinate regulation of metabolite glycosylation and stress hormone biosynthesis by TT8 in Arabidopsis. Plant Physiol. 2016;171:2499–515.
CAS
PubMed
PubMed Central
Google Scholar
Baudry A, Caboche M, Lepiniec L. TT8 controls its own expression in a feedback regulation involving TTG1 and homologous MYB and bHLH factors, allowing a strong and cell-specific accumulation of flavonoids in Arabidopsis thaliana. Plant J. 2006;46:768–79.
Article
CAS
PubMed
Google Scholar
Gonzalez A, Mendenhall J, Huo Y, Lloyd A. TTG1 complex MYBs, MYB5 and TT2, control outer seed coat differentiation. Dev Biol. 2009;325:412–21.
Article
CAS
PubMed
Google Scholar
Clevenger J, Chu Y, Scheffler B, Ozias-Akins P. A developmental transcriptome map for allotetraploid Arachis hypogaea. Front Plant Sci. 2016;7:1446.
Article
PubMed
PubMed Central
Google Scholar
Hemm M, Rider S, Ogas J, Murry D, Chapple C. Light induces phenylpropanoid metabolism in Arabidopsis roots. Plant J. 2004;38:765–78.
Article
CAS
PubMed
Google Scholar
Masclaux-Daubresse C, Clement G, Anne P, Routaboul J, Guiboileau A, Soulay F, Shirasu K, Yoshimoto K. Stitching together the multiple dimensions of autophagy using metabolomics and transcriptomics reveals impacts on metabolism, development, and plant responses to the environment in Arabidopsis. Plant Cell. 2014;26:1857–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei S, Li X, Gruber M, Feyissa B, Amyot L, Hannoufa A. COP9 signalosome subunit 5A affects phenylpropanoid metabolism, trichome formation and transcription of key genes of a regulatory tri-protein complex in Arabidopsis. BMC Plant Biol. 2018;18:134.
Article
PubMed
PubMed Central
CAS
Google Scholar
Spelt C, Quattrocchio F, Mol J, Koes R. ANTHOCYANIN1 of petunia controls pigment synthesis, vacuolar pH, and seed coat development by genetically distinct mechanisms. Plant Cell. 2002;14:2121–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carey C, Strahle J, Selinger D, Chandler V. Mutations in the pale aleurone color1 regulatory gene of the Zea mays anthocyanin pathway have distinct phenotypes relative to the functionally similar TRANSPARENT TESTA GLABRA1 gene in Arabidopsis thaliana. Plant Cell. 2004;16:450–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gonzalez A, Zhao M, Leavitt J, Lloyd A. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J. 2008;53:814–27.
Article
CAS
PubMed
Google Scholar
Zhao M, Morohashi K, Hatlestad G, Grotewold E, Lloyd A. The TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci. Development. 2008;135:1991–9.
Article
CAS
PubMed
Google Scholar
Lloyd A, Brockman A, Aguirre L, Campbell A, Bean A, Cantero A, Gonzalez A. Advances in the MYB-bHLH-WD repeat (MBW) pigment regulatory model: addition of a WRKY factor and co-option of an anthocyanin MYB for betalain regulation. Plant Cell Physiol. 2017;58:1431–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 2001;126:485–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiao J, Capanoglu E, Jassbi A, Miron A. Advance on the flavonoid C-glycosides and health benefits. Crit Rev Food Sci Nutr. 2016;56(Suppl 1):S29–45.
Article
CAS
PubMed
Google Scholar
Wasternack C, Hause B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in annals of botany. Ann Bot. 2013;111:1021–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang S, Chen C, Wang C, Chen P. Resveratrol content in strawberry fruit is affected by preharvest conditions. J Agric Food Chem. 2007;55:8269–74.
Article
CAS
PubMed
Google Scholar
Wang K, Jin P, Cao S, Shang H, Yang Z, Zheng Y. Methyl jasmonate reduces decay and enhances antioxidant capacity in Chinese bayberries. J Agric Food Chem. 2009;57:5809–15.
Article
CAS
PubMed
Google Scholar
Flores G, Blanch G, Del Castillo M. Effect of postharvest methyl jasmonate treatment on fatty acid composition and phenolic acid content in olive fruits during storage. J Sci Food Agric. 2017;97:2767–72.
Article
CAS
PubMed
Google Scholar
Wasternack C, Song S. Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. J Exp Bot. 2017;68:1303–21.
CAS
PubMed
Google Scholar
Dombrecht B, Xue G, Sprague S, Kirkegaard J, Ross J, Reid J, Fitt GP, Sewelam N, Schenk PM, Manners JM, Kazan K. MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell. 2007;19:2225–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fernandez-Calvo P, Chini A, Fernandez-Barbero G, Chico J, Gimenez-Ibanez S, Geerinck J, Eeckhout D, Schweizer F, Godoy M, Franco-Zorrilla JM, Pauwels L, Witters E, Puga MI, Paz-Ares J, Goossens A, Reymond P, De Jaeger G, Solano R. The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell. 2011;23:701–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Montiel G, Zarei A, Korbes A, Memelink J. The jasmonate-responsive element from the ORCA3 promoter from Catharanthus roseus is active in Arabidopsis and is controlled by the transcription factor AtMYC2. Plant Cell Physiol. 2011;52:578–87.
Article
CAS
PubMed
Google Scholar
Hong G, Xue X, Mao Y, Wang L, Chen X. Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. Plant Cell. 2012;24:2635–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhai Q, Yan L, Tan D, Chen R, Sun J, Gao L, Dong MQ, Wang Y, Li C. Phosphorylation-coupled proteolysis of the transcription factor MYC2 is important for jasmonate-signaled plant immunity. PLoS Genet. 2013;9:e1003422.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song S, Qi T, Wasternack C, Xie D. Jasmonate signaling and crosstalk with gibberellin and ethylene. Curr Opin Plant Biol. 2014;21:112–9.
Article
CAS
PubMed
Google Scholar
Asami T, Nakano T, Fujioka S. Plant brassinosteroid hormones. Vitam Horm. 2005;72:479–504.
Article
CAS
PubMed
Google Scholar
Noguchi T, Fujioka S, Choe S, Takatsuto S, Yoshida S, Yuan H, Feldmann KA, Tax FE. Brassinosteroid-insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids. Plant Physiol. 1999;121(3):743–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Choe S, Schmitz RJ, Fujioka S, Takatsuto S, Lee MO, Yoshida S, Feldmann KA, Tax FE. Arabidopsis brassinosteroid-insensitive dwarf12 mutants are semidominant and defective in a glycogen synthase kinase 3beta-like kinase. Plant Physiol. 2002;130(3):1506–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mora-García S, Vert G, Yin Y, Caño-Delgado A, Cheong H, Chory J. Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis. Genes Dev. 2004;18(4):448–60.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sun Y, Fan XY, Cao DM, Tang W, He K, Zhu JY, He JX, Bai MY, Zhu S, Oh E, Patil S, Kim TW, Ji H, Wong WH, Rhee SY, Wang ZY. Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev Cell. 2010;19(5):765–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Figueiredo D, Batista R, Roszak P, Hennig L, Kohler C. Auxin production in the endosperm drives seed coat development in Arabidopsis. Elife. 2016;5:e20542.
Qu C, Fu F, Lu K, Zhang K, Wang R, Xu X, Wang M, Lu J, Wan H, Zhanglin T, Li J. Differential accumulation of phenolic compounds and expression of related genes in black- and yellow-seeded Brassica napus. J Exp Bot. 2013;64(10):2885–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong T, Han R, Yu J, Zhu M, Zhang Y, Gong Y, Li Z. Anthocyanins accumulation and molecular analysis of correlated genes by metabolome and transcriptome in green and purple asparaguses (Asparagus officinalis, L.). Food Chem. 2019;271:18–28.
Article
CAS
PubMed
Google Scholar
Poirier Y, Ventre G, Caldelari D. Increased flow of fatty acids toward beta-oxidation in developing seeds of Arabidopsis deficient in diacylglycerol acyltransferase activity or synthesizing medium-chain-length fatty acids. Plant Physiol. 1999;121:1359–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bertioli DJ, Cannon SB, Froenicke L, Huang G, Farmer AD, Cannon EK, Liu X, Gao D, Clevenger J, Dash S, Ren L, Moretzsohn MC, Shirasawa K, Huang W, Vidigal B, Abernathy B, Chu Y, Niederhuth CE, Umale P, Araújo AC, Kozik A, Kim KD, Burow MD, Varshney RK, Wang X, Zhang X, Barkley N, Guimarães PM, Isobe S, Guo B, Liao B, Stalker HT, Schmitz RJ, Scheffler BE, Leal-Bertioli SC, Xun X, Jackson SA, Michelmore R, Ozias-Akins P. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet. 2016;48:438–46.
Article
CAS
PubMed
Google Scholar
Langmead B, Salzberg S. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9:357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li B, Dewey C. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12:323.
Article
CAS
Google Scholar
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 2008;9:559.
Article
CAS
Google Scholar
Langfelder P, Horvath S. Fast R functions for robust correlations and hierarchical clustering. J Stat Softw. 2012;46:1–17.
Article
Google Scholar