Mariana BI, Sina NC. Effect of climatic conditions on flowering of walnut genotypes in Romania. J Nuts. 2017;8(02):161–7.
Google Scholar
TavakoliBanizi R, Imani A, Zeinalabedini M, Ebrahimi A, Piri S. Genetic mapping of blooming time in ‘Marcona’בFragness’ population with using molecular markers. J Nuts. 2015;6(1):57–65.
CAS
Google Scholar
Hassankhah A, Vahdati K, Rahemi M, Sarikhani KS. Persian walnut phenology: effect of chilling and heat requirements on budbreak and flowering date. Int J Hortic Sci Technol. 2017;4(2):259–71.
Google Scholar
Wilkie JD, Sedgley M, Olesen TJ. Regulation of floral initiation in horticultural trees. J Exp Bot. 2008;59(12):3215–28.
Article
CAS
PubMed
Google Scholar
Hanke M-V, Flachowsky H, Peil A, Hättasch C. No flower no fruit-genetic potentials to trigger flowering in fruit trees. Genes Genom Genet. 2007;1(1):1–20.
Google Scholar
Haughn GW, Somerville CR. Genetic control of morphogenesis in Arabidopsis. Dev Genetics. 1988;9(2):73–89.
Article
Google Scholar
Schwarz-Sommer Z, Huijser P, Nacken W, Saedler H, Sommer H. Genetic control of flower development by homeotic genes in Antirrhinum majus. Sci. 1990;250(4983):931–6.
Article
CAS
Google Scholar
Jack T. Molecular and genetic mechanisms of floral control. Plant Cell. 2004;16(suppl 1):S1–S17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Irish V. The ABC model of floral development. Curr Biol. 2017;27(17):R887–90.
Article
CAS
PubMed
Google Scholar
Bowman JL, Smyth DR, Meyerowitz EM. The ABC model of flower development: then and now. Dev. 2012;139(22):4095–8.
Article
CAS
Google Scholar
Lee J, Lee IJ. Regulation and function of SOC1, a flowering pathway integrator. J Exp Bot. 2010;61(9):2247–54.
Article
CAS
PubMed
Google Scholar
Andrés F, Romera-Branchat M, Martínez-Gallegos R, Patel V, Schneeberger K, Jang S, Altmüller J, Nürnberg P, Coupland G. Floral induction in Arabidopsis by FLOWERING LOCUS T requires direct repression of BLADE-ON-PETIOLE genes by the homeodomain protein PENNYWISE. Plant Physiol. 2015;169(3):2187–99.
PubMed
PubMed Central
Google Scholar
Liu C, Xi W, Shen L, Tan C, Yu H. Regulation of floral patterning by flowering time genes. Dev Cell. 2009;16(5):711–22.
Article
CAS
PubMed
Google Scholar
Kempin SA, Savidge B, Yanofsky MF. Molecular basis of the cauliflower phenotype in Arabidopsis. Sci. 1995;267(5197):522–5.
Article
CAS
Google Scholar
Blázquez MA, Soowal LN, Lee I, Weigel D. LEAFY expression and flower initiation in Arabidopsis. Dev. 1997;124(19):3835–44.
Google Scholar
Hanano S, Goto K. Arabidopsis TERMINAL FLOWER1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression. Plant Cell. 2011;23(9):3172–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dutta S, Biswas P, Chakraborty S, Mitra D, Pal A, Das M. Identification, characterization and gene expression analyses of important flowering genes related to photoperiodic pathway in bamboo. BMC Genomics. 2018;19(1):190.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rohde A, Bhalerao RP. Plant dormancy in the perennial context. Trends Plant Sci. 2007;12(5):217–23.
Article
CAS
PubMed
Google Scholar
Wang S, Gao J, Xue J, Xue Y, Li D, Guan Y, Zhang X. De novo sequencing of tree peony (Paeonia suffruticosa) transcriptome to identify critical genes involved in flowering and floral organ development. BMC Genomics. 2019;20(1):572.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li H, Li J, Dong Y, Hao H, Ling Z, Bai H, Wang H, Cui H, Shi L. Time-series transcriptome provides insights into the gene regulation network involved in the volatile terpenoid metabolism during the flower development of lavender. BMC Plant Biol. 2019;19(1):313.
Article
PubMed
PubMed Central
CAS
Google Scholar
Khorami SS, Arzani K, Karimzadeh G, Shojaeiyan A, Ligterink W. Genome size: a novel predictor of nut weight and nut size of walnut trees. HortScience. 2018;53(3):275–82.
Article
Google Scholar
Mahmoodi R, Hassani D, Amiri ME, Jaffaraghaei M. Phenological and pomological characteristics of five promised walnut genotypes in Karaj. Iran J Nuts. 2016;7(01):1–8.
Google Scholar
Tan FC, Swain SM. Genetics of flower initiation and development in annual and perennial plants. Physiol Plant. 2006;128(1):8–17.
Article
CAS
Google Scholar
Gao Y, Liu H, Dong N, Pei DJ. Temporal and spatial pattern of indole-3-acetic acid occurrence during walnut pistillate flower bud differentiation as revealed by immunohistochemistry. J Am Soc Hortic Sci. 2012;137(5):283–9.
Article
CAS
Google Scholar
Hättasch C, Flachowsky H, Hanke M-V, Lehmann S, Gau A, Kapturska D. The switch to flowering: genes involved in floral induction of the apple cultivar ‘Pinova’ and the role of the flowering gene MdFT. Acta Hort. 2008;839:701–5.
Google Scholar
Lin X, Chow T, Chen H, Liu C, Chou S, Huang B, Kuo C, Wen C, Huang L, Fang W. Understanding bamboo flowering based on large-scale analysis of expressed sequence tags. Genet Mol Res. 2010;9(2):1085–93.
Article
CAS
PubMed
Google Scholar
Muñoz-Fambuena N, Mesejo C, Carmen González-Mas M, Primo-Millo E, Agustí M, Iglesias DJ. Fruit regulates seasonal expression of flowering genes in alternate-bearing ‘Moncada’ mandarin. Ann Bot. 2011;108(3):511–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li Y, Zhao Y, Yang K, Fang Y, Hou L. Studies on floral organ development process of precocious walnut (Juglans regia) by anatomia. Acta Hort Sinica. 2011;38(3):434–40.
Google Scholar
Germain E, Prunet J, Garcin A. Le noyer. 1st ed. CTIFL Press. France: Centre Technique Interprofessionnel des Fruits et Légumes; 1999.
Mouradov A, Cremer F, Coupland G. Control of flowering time: interacting pathways as a basis for diversity. Plant Cell. 2002;14(suppl 1):S111–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang H, Harry DE, Ma C, Yuceer C, Hsu C-Y, Vikram V, Shevchenko O, Etherington E, Strauss SHJ. Precocious flowering in trees: the FLOWERING LOCUS T gene as a research and breeding tool in Populus. J Exp Bot. 2010;61(10):2549–60.
Article
CAS
PubMed
Google Scholar
Adeyemo OS, Chavarriaga P, Tohme J, Fregene M, Davis SJ, Setter TL. Overexpression of Arabidopsis FLOWERING LOCUS T (FT) gene improves floral development in cassava (Manihot esculenta Crantz). PlosOne. 2017;12(7):e0181460.
Article
CAS
Google Scholar
Wickland DP, Hanzawa Y. The FLOWERING LOCUS T/TERMINAL FLOWER 1 gene family: functional evolution and molecular mechanisms. Mol Plant. 2015;8(7):983–97.
Article
CAS
PubMed
Google Scholar
Zeevaart JA. Leaf-produced floral signals. Curr Opin Plant Biol. 2008;11(5):541–7.
Article
CAS
PubMed
Google Scholar
Varkonyi-Gasic E, Moss S, Voogd C, Wang T, Putterill J, Hellens RP. Homologs of FT, CEN and FD respond to developmental and environmental signals affecting growth and flowering in the perennial vine kiwifruit. New Phytol. 2013;198(3):732–46.
Article
CAS
PubMed
Google Scholar
Harig L, Beinecke FA, Oltmanns J, Muth J, Müller O, Rüping B, Twyman RM, Fischer R, Prüfer D, Noll GA. Proteins from the FLOWERING LOCUS T-like subclade of the PEBP family act antagonistically to regulate floral initiation in tobacco. Plant J. 2012;72(6):908–21.
Article
CAS
PubMed
Google Scholar
Hsu C-Y, Adams JP, Kim H, No K, Ma C, Strauss SH, Drnevich J, Vandervelde L, Ellis JD, Rice BM. FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar. Proc Natl Acad Sci U S A. 2011;108(26):10756–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rinne PL, Welling A, Vahala J, Ripel L, Ruonala R, Kangasjärvi J, van der Schoot C. Chilling of dormant buds hyperinduces FLOWERING LOCUS T and recruits GA-inducible 1, 3-β-glucanases to reopen signal conduits and release dormancy in Populus. Plant Cell. 2011;23(1):130–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pérez FJ, Kühn N, Vergara R. Expression analysis of phytochromes a, B and floral integrator genes during the entry and exit of grapevine-buds from endodormancy. J Plant Physiol. 2011;168(14):1659–66.
Article
PubMed
CAS
Google Scholar
Lee J, Oh M, Park H, Lee I. SOC1 translocated to the nucleus by interaction with AGL24 directly regulates LEAFY. Plant J. 2008;55(5):832–43.
Article
CAS
PubMed
Google Scholar
Borner R, Kampmann G, Chandler J, Gleißner R, Wisman E, Apel K, Melzer S. A MADS domain gene involved in the transition to flowering in Arabidopsis. Plant J. 2000;24(5):591–9.
Article
CAS
PubMed
Google Scholar
Lee H, Suh S-S, Park E, Cho E, Ahn JH, Kim S-G, Lee JS, Kwon YM, Lee I. The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev. 2000;14(18):2366–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Onouchi H, Igeño MI, Périlleux C, Graves K, Coupland G. Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes. Plant Cell. 2000;12(6):885–900.
Article
CAS
PubMed
PubMed Central
Google Scholar
Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Sci. 2000;288(5471):1613–6.
Article
CAS
Google Scholar
Yoo SK, Chung KS, Kim J, Lee JH, Hong SM, Yoo SJ, Yoo SY, Lee JS, Ahn JH. Constans activates suppressor of overexpression of constans 1 through flowering Locus T to promote flowering in Arabidopsis. J Plant Physiol. 2005;139(2):770–8.
Article
CAS
Google Scholar
Moon J, Suh SS, Lee H, Choi KR, Hong CB, Paek NC, Kim SG, Lee I. The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J. 2003;35(5):613–23.
Article
CAS
PubMed
Google Scholar
Ferrándiz C, Gu Q, Martienssen R, Yanofsky MF. Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Dev. 2000;127(4):725–34.
Google Scholar
Wagner JA, Varga K, Járai Z, Kunos G. Mesenteric vasodilation mediated by endothelial anandamide receptors. J Hypertens. 1999;33(1):429–34.
Article
CAS
Google Scholar
William DA, Su Y, Smith MR, Lu M, Baldwin DA, Wagner D. Genomic identification of direct target genes of LEAFY. Proc Natl Acad Sci U S A. 2004;101(6):1775–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
An H, Roussot C, Suárez-López P, Corbesier L, Vincent C, Piñeiro M, Hepworth S, Mouradov A, Justin S, Turnbull C. CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Dev. 2004;131(15):3615–26.
Article
CAS
Google Scholar
Shannon S, Meeks-Wagner DR. A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell. 1991;3(9):877–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E. Inflorescence commitment and architecture in Arabidopsis. Sci. 1997;275(5296):80–3.
Article
CAS
Google Scholar
Liljegren SJ, Gustafson-Brown C, Pinyopich A, Ditta GS, Yanofsky MF. Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell. 1999;11(6):1007–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ratcliffe OJ, Bradley DJ, Coen ES. Separation of shoot and floral identity in Arabidopsis. Dev. 1999;126(6):1109–20.
CAS
Google Scholar
Parcy F, Bomblies K, Weigel D. Interaction of LEAFY, AGAMOUS and TERMINAL FLOWER1 in maintaining floral meristem identity in Arabidopsis. Dev. 2002;129(10):2519–27.
CAS
Google Scholar
Bowman JL, Alvarez J, Weigel D, Meyerowitz EM, Smyth DR. Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Dev. 1993;119(3):721–43.
CAS
Google Scholar
Mandel MA, Yanofsky MF. A gene triggering flower formation in Arabidopsis. Nature. 1995;377(6549):522.
Article
CAS
PubMed
Google Scholar
He F, Wang H, Zhang ZJ. Molecular cloning and sequence analysis of an LFY homologous gene from Juglans regia L. Front Agri China. 2011;5(3):366.
Article
Google Scholar
Kobayashi Y, Weigel D. Development. Move on up, it’s time for change—mobile signals controlling photoperiod-dependent flowering. Genes Dev. 2007;21(19):2371–84.
Article
CAS
PubMed
Google Scholar
Blázquez MA, Ferrandiz C, Madueno F, Parcy F. How floral meristems are built. Plant Mol Biol. 2006;60(6):855–70.
Article
PubMed
CAS
Google Scholar
Hassankhah A, Rahemi M, Mozafari MR, Vahdati K. Flower development in walnut: altering the flowering pattern by Gibberellic acid application. Not Bot Horti Agrobo Cluj-NA. 2018;46(2):700–6.
Article
CAS
Google Scholar
Richardson EA, Seeley SD, Walker DR. A model for estimating the completion of rest for Redhaven and Elberta peach trees. HortScience. 1974;9:331–2.
Google Scholar