Howarth CJ. Molecular responses of plants to an increased incidence of heat shock. Plant Cell Environ. 1991;14:831–41.
Article
CAS
Google Scholar
Basha E, O’Neill H, Vierling E. Small heat shock proteins and a-crystallins: dynamic proteins with flexible functions. Trends Biochem Sci. 2012;37:106–17.
Article
CAS
PubMed
Google Scholar
Haslbeck M, Franzmann T, Weinfurtner D, Buchner J. Some like it hot: the structure and function of small heat shock proteins. Nat Struct Mol Biol. 2005;12:842–6.
Article
CAS
PubMed
Google Scholar
Lee GJ, Roseman AM, Saibil HR, Vierling E. A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J. 1997;16:659–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun W, Bernard C, van de Cotte B, van Montagu M, Verbruggen N. AtHSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhanceosmotolerance upon overexpression. Plant J. 2001;27:407–15.
Article
CAS
PubMed
Google Scholar
Sun Y, MacRae TH. Small heat shock proteins: molecular structure and chaperone function. Cell Mol Life Sci. 2005;62:2460–76.
Article
CAS
PubMed
Google Scholar
McHaourab HS, Godar JA, Stewart PL. Structure and mechanism of protein stability sensors: chaperone activity of small heat shock proteins. Biochemistry. 2009;48:3828–37.
Article
CAS
PubMed
Google Scholar
Eyles SJ. Gierasch LM Nature’s molecular sponges: small heat shock proteins grow into their chaperone roles. Proc Natl Acad Sci U S A. 2010;107:2727–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang D, Luthe DS. Heat sensitivity in a bentgrass variant. Failure to accumulate a chloroplast heat shock protein isoform implicated in heat tolerance. Plant Physiol. 2003;133:319–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun L, Liu Y, Kong X, Zhang D, Pan J, Zhou Y, et al. ZmHSP16.9, a cytosolic class I small heat shock protein in maize (Zea mays), confers heat tolerance in transgenic tobacco. Plant Cell Rep. 2012;31:1473–84.
Article
CAS
PubMed
Google Scholar
Yang G, Wang Y, Zhang K, Gao C. Expression analysis of nine small heat shock protein genes from Tamarix hispida in response to different abiotic stresses and abscisic acid treatment. Mol Biol Rep. 2014;41:1279–89.
Article
CAS
PubMed
Google Scholar
Zhang J, Liu B, Li J, Zhang L, Wang Y, Zheng H, et al. Hsf and Hsp gene families in Populus: genome-wide identification, organization and correlated expression during development and in stress response. BMC Genomics. 2015;16:181.
Article
PubMed
PubMed Central
Google Scholar
Hu T, Liu S, Amombo E. Fu J. Stress memory induced rearrangements of HSP transcription, photosystem II photochemistry and metabolism of tall fescue (Festuca arundinacea Schreb.) in response to high-temperature stress. Front. Plant Sci. 2015; 6:403.
Nitnavare RB, Yeshvekar RK, Sharma KK, Vadez V, Reddy MK, Reddy PS. Molecular cloning, characterization and expression analysis of a heat shock protein 10 (Hsp10) from Pennisetum glaucum (L.), a C4 cereal plant from the semi-arid tropics. Mol Biol Rep. 2016;43:861–70.
Article
CAS
PubMed
Google Scholar
Sun X, Sun C, Li Z, Hu Q, Han L, Luo H. AsHSP17, a creeping bentgrass small heat shock protein modulates plant photosynthesis and ABA-dependent and independent signalling to attenuate plant response to abiotic stress. Plant Cell Environ. 2016;39:1320–37.
Article
CAS
PubMed
Google Scholar
Sun W, Van Montagu M, Verbruggen N. Small heat shock proteins and stress tolerance in plants. Biochim Biophys Acta. 2002;1577:1–9.
Article
CAS
PubMed
Google Scholar
Siddique M, Gernhard S, von Koskull-Döring P, Vierling E, Scharf KD. The plant sHSP superfamily: five new members in Arabidopsis thaliana with unexpected properties. Cell Stress Chaperones. 2008;13:183–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim KK, Kim R, Kim SH. Crystal structure of a small heat-shock protein. Nature. 1998;394:595–9.
Article
CAS
PubMed
Google Scholar
Park H, Ko E, Jang E, Park S, Lee J, Ahn Y. Expression of DcHSP17.7, a small heat shock protein gene in carrot (Daucus carota L.). Hortic Environ Biote. 2013;54:121–7.
Article
CAS
Google Scholar
Volkov RA, Panchuk II, Schöffl F. Small heat shock proteins are differentially regulated during pollen development and following heat stress in tobacco. Plant Mol Biol. 2005;57:487–502.
Article
CAS
PubMed
Google Scholar
Chauhan H, Khurana N, Nijhavan A, Khurana JP, Khurana P. The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress. Plant Cell Environ. 2012;35:1912–31.
Article
CAS
PubMed
Google Scholar
Zhong L, Zhou W, Wang H, Ding S, Lu Q, Wen X, et al. Chloroplast small heat shock protein HSP21 interacts with plastid nucleoid protein pTAC5 and is essential for chloroplast development in Arabidopsis under heat stress. Plant Cell. 2013;25:2925–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murakami T, Matsuba S, Funatsuki H, Kawaguchi K, Saruyama H, Tanida M, Sato Y. Over-expression of a small heat shock protein, sHSP17.7, confers both heat tolerance and UV-B resistance to rice plants. Mol Breed. 2004;13:165–75.
Article
CAS
Google Scholar
Sato Y, Yokoya S. Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7. Plant Cell Rep. 2008;27:329–34.
Article
CAS
PubMed
Google Scholar
Jiang C, Xu J, Zhang H, Zhang X, Shi J, Li M, Ming F. A cytosolic class I small heat shock protein, RcHSP17.8, of Rosa chinensis confers resistance to a variety of stresses to Escherichia coli, yeast and Arabidopsis thaliana. Plant Cell Environ. 2009;32:1046–59.
Article
CAS
PubMed
Google Scholar
Kim KH, Alam I, Kim YG, Sharmin SA, Lee KW, Lee SH, Lee BH. Overexpression of a chloroplast-localized small heat shock protein OsHSP26 confers enhanced tolerance against oxidative and heat stresses in tall fescue. Biotechnol Lett. 2012;34:371–7.
Article
CAS
PubMed
Google Scholar
Kim DH, Xu Z, Hwang I. AtHSP17.8 overexpression in transgenic lettuce gives rise to dehydration and salt stress resistance phynotypes through modulation of ABA-mediated signaling. Plant Cell Rep. 2013;32:1953–63.
Article
CAS
PubMed
Google Scholar
Zhou Y, Chen H, Chu P, Li Y, Tan B, Ding Y, et al. NnHSP17.5, a cytosolic class II small heat shock protein gene from Nelumbo nucifera, contributes to seed germination vigor and seedling thermotolerance in transgenic Arabidopsis. Plant Cell Rep. 2012;31:379–89.
Article
CAS
PubMed
Google Scholar
Ham DJ, Moon JC, Hwang SG, Jang CS. Molecular characterization of two small heat shock protein genes in rice: their expression patterns, localizations, networks, and heterogeneous overexpressions. Mol Biol Rep. 2013;40:6709–20.
Article
CAS
Google Scholar
Mu C, Zhang S, Yu G, Chen N, Li X, Liu H. Overexpression of small heat shock protein LimHSP16.45 in Arabidopsis enhances tolerance to abiotic stresses. PLoS One. 2013;8:e82264. https://doi.org/10.1371/journal.pone.0082264.
Article
CAS
PubMed
PubMed Central
Google Scholar
Merino I, Contreras A, Jing ZP, Gallardo F, Cánovas FM, Gómez L. Plantation forestry under global warming: hybrid poplars with improved thermotolerance provide new insights on the in vivo function of small heat shock protein chaperones. Plant Physiol. 2014;164:978–91.
Article
CAS
PubMed
Google Scholar
Santhanagopalan I, Basha E, Ballard KN, Bopp NE, Vierling E. Model chaperones: small heat shock proteins from plants. In: Tanguay RM, Hightower LE, editors. The big book on small heat shock proteins. Cham, Switzerland: Springer International Publishing; 2015. p. 119–53.
Chapter
Google Scholar
McLoughlin F, Basha E, Fowler ME, Kim M, Bordowitz J, Katiyar-Agarwal S, Vierling E. Class I and II small heat shock proteins together with HSP101 protect protein translation factors during heat stress. Plant Physiol. 2016;172:1221–36.
CAS
PubMed
PubMed Central
Google Scholar
Waters ER, Vierling E. The diversification of plant cytosolic small heat shock proteins preceded the divergence of mosses. Mol Biol Evol. 1999;16:127–39.
Article
CAS
PubMed
Google Scholar
Waters ER, Rioflorido I. Evolutionary analysis of the small heat shock proteins in five complete algal genomes. J Mol Evol. 2007;65:162–74.
Article
CAS
PubMed
Google Scholar
Waters ER. The evolution, function, structure, and expression of the plant sHSPs. J Exp Bot. 2013;64:391–403.
Article
CAS
PubMed
Google Scholar
Li Y, Li Y, Liu Y, Wu Y, Xie Q. The sHSP22 heat shock protein requires the ABI1 protein phosphatase to modulate polar auxin transport and downstream responses. Plant Physiol. 2018;176:2406–25.
Article
CAS
PubMed
Google Scholar
Li G, Li J, Hao R, Guo Y. Activation of catalase activity by a peroxisome-localized small heat shock protein Hsp17.6II. J Genet Genomics. 2017;44:395–404.
Article
PubMed
Google Scholar
Ma W, Guan X, Li J, Pan R, Wang L, Liu F, et al. Mitochondrial small heat shock protein mediates seed germination via thermal sensing. Proc Natl Acad Sci U S A. 2019;116:4716–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heckathorn SA, Downs CA, Sharkey TD, Coleman JS. The small, methionine-rich chloroplast heat-shock protein protects photosystem II electron transport during heat stress. Plant Physiol. 1998;116:439–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heckathorn SA, Ryan SL, Baylis JA, Wang DF, Hamilton EW, Cundiff L, et al. In vivo evidence from an Agrostis stolonifera selection genotype that chloroplast small heat-shock proteins can protect photosystem II during heat stress. Funct Plant Biol. 2002;29:933–44.
Article
CAS
Google Scholar
Shakeel S, Ul Haq N, Heckathorn SA, Hamilton EW, Luthe DS. Ecotypic variation in chloroplast small heat-shock proteins and related thermotolerance in Chenopodium album. Plant Physiol Biochem. 2011;49:898–908.
Article
CAS
PubMed
Google Scholar
Harndahl U, Hall RB, Osteryoung KW, Vierling E, Bornman JF. Sundby C. The chloroplast small heat shock protein undergoes oxidation-dependent conformational changes and may protect plants from oxidative stress. Cell Stress Chaperones 1999;4: 129–138.
Chen S, He N, Chen J, Guo F. Identification of core subunits of photosystem II as action sites of HSP21, which is activated by the GUN5-mediated retrograde pathway in Arabidopsis. Plant J. 2017;89:1106–18.
Article
CAS
PubMed
Google Scholar
Sedaghatmehr M, Mueller-Roeber B, Balazadeh S. The plastid metalloprotease FtsH6 and small heat shock protein HSP21 jointly regulate thermomemory in Arabidopsis. Nat Commun. 2016;7:12439.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Z, Hu Q, Zhou M, Vandenbrink J, Li D, Menchyk N, et al. Heterologous expression of OsSIZ1, a rice SUMO E3 ligase, enhances broad abiotic stress tolerance in transgenic creeping bentgrass. Plant Biotechnol J. 2013;11:432–45.
Article
CAS
PubMed
Google Scholar
Li Z, Yuan S, Jia H, Gao F, Zhou M, Yuan N, et al. Ectopic expression of a cyanobacterial flavodoxin in creeping bentgrass impacts plant development and confers broad abiotic stress tolerance. Plant Biotechnol J. 2016;15:433–46.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhao J, Yuan S, Zhou M, Yuan N, Li Z, Hu Q, et al. Transgenic creeping bentgrass overexpressing Osa-miR393a exhibits altered plant development and improved multiple stress tolerance. Plant Biotechnol J. 2018;17:233–51.
Article
PubMed
PubMed Central
CAS
Google Scholar
Finkelstein R: Abscisic acid synthesis and response. Arabidopsis Book 2013, 11:e0166 http://dx.doi.org/https://doi.org/10.1199/tab.%200166.
Wani SH, Kumar V. Plant stress tolerance: engineering ABA: a potent phytohormone. Transcriptomics: Open Access. 2015;3:1000113.
Article
Google Scholar
Sah SK, Reddy KR, Li J. Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci. 2016;7:571.
Article
PubMed
PubMed Central
Google Scholar
Vierling E, Harris LM, Chen Q. The major low-molecularweight heat-shock protein in chloroplasts shows antigenic conservation among diverse higher-plant species. Mol Cell Biol. 1989;9:461–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vierling E. The roles of heat-shock proteins in plants. Annu. Rev. plant Physiol. Plant Mol. Biol. 1991;42:579–620.
CAS
Google Scholar
Scharf KD, Berberich T, Ebersberbger I, Nover L. The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim Biophys Acta. 1819;2012:104–19.
Google Scholar
Akhtar M, Jaiswal A, Taj G, Jaiswal JP, Qureshi MI, Singh NK. DREB1/CBF transcription factors: their structure, function and role in abiotic stress tolerance in plants. J Genet. 2012;91:385–95.
Article
CAS
PubMed
Google Scholar
Fragkostefanakis S, Röth S, Schleiff E, Scharf KD. Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks. Plant Cell Environ. 2015;38:1881–95.
Article
CAS
PubMed
Google Scholar
Jacob P, Hirt H, Bendahmane A. The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnol J. 2017;15:405–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ikeda M, Mitsuda N, Ohme-Takagi M. Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance. Plant Physiol. 2011;157:1243–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ashraf M, Yang S, Wu R, Wang Y, Hussain A, Noman A, et al. Capsicum annuum HsfB2a positively regulates the response to Ralstonia solanacearum infection or high temperature and high humidity forming transcriptional cascade with CaWRKY6 and CaWRKY40. Plant Cell Physiol. 2018;59:2608–23.
CAS
PubMed
Google Scholar
Guan Q, Yue X, Zeng H, Zhu J. The protein phosphatase RCF2 and its interacting partner NAC019 are critical for heat stress-responsive gene regulation and thermotolerance in Arabidopsis. Plant Cell. 2014;26:438–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhuang L, Cao W, Wang J, Yang Z, Huang B. Characterization and functional analysis of FaHsfC1b from Festuca arundinacea conferring heat tolerance in Arabidopsis. Int J Mol Sci. 2018;19:2702.
Article
PubMed Central
CAS
Google Scholar
Zhang D. Abscisic acid: metabolism, transport and signaling. New York, NY: Springer; 2014.
Google Scholar
Bartels D, Sunkar R. Drought and salt tolerance in plants. Crit Rev Plant Sci. 2005;24:23–58.
Article
CAS
Google Scholar
Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol. 2006;57:781–803.
Article
CAS
PubMed
Google Scholar
Shao HB, Liang ZS, Shao MA. LEA proteins in higher plants: structure, function, gene expression and regulation. Colloids Surf B Biointerfaces. 2005;45:131–5.
Article
CAS
Google Scholar
Xiao B, Huang Y, Tang N, Xiong L. Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet. 2007;115:35–46.
Article
CAS
PubMed
Google Scholar
Tang N, Ma S, Zong W, Yang N, Lv Y, Yan C, et al. MODD mediates deactivation and degradation of OsbZIP46 to negatively regulate ABA signaling and drought resistance in rice. Plant Cell. 2016;28:2161–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang L, Zhang M, Jia J, Zhao X, Huang X, Ji E, et al. An atypical late embryogenesis abundant protein OsLEA5 plays a positive role in ABA-induced antioxidant defense in Oryza Sativa L. Plant Cell Physiol. 2018;59:916–29.
Article
CAS
PubMed
Google Scholar
Magwanga RO, Lu P, Kirungu JN, Dong Q, Hu Y, Zhou Z, et al. Cotton late embryogenesis abundant (LEA2) genes promote root growth and confers drought stress tolerance in transgenic Arabidopsis thaliana. G3-genes genomes. Genetics. 2018;8:2781–803.
CAS
Google Scholar
Ambawat S, Sharma P, Yadav NR, Yadav RC. MYB transcription factor genes as regulators for plant responses: an overview. Physiol Mol Biol Plants. 2013;19:307–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baldoni E, Genga A, Cominelli E. Plant MYB transcription factors: their role in drought response mechanisms. Int J Mol Sci. 2015;16:15811–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li C, Ng CKY, Fan LM. MYB transcription factors, active players in abiotic stress signaling. Environ Exp Bot. 2015;114:80–91.
Article
CAS
Google Scholar
Yu Y, Ni Z, Chen Q, Qu Y. The wheat salinity-induced R2R3-MYB transcription factor TaSIM confers salt stress tolerance in Arabidopsis thaliana. Biochem Biophys Res Commun. 2017;491:642–8.
Article
CAS
PubMed
Google Scholar
Wei Q, Luo Q, Wang R, Zhang F, He Y, Zhang Y, et al. A wheat R2R3-type MYB transcription factor TaODORANT1 positively regulates drought and salt stress responses in transgenic tobacco plants. Front Plant Sci. 2017;8:1374.
Article
PubMed
PubMed Central
Google Scholar
Gao F, Zhou J, Deng R, Zhao H, Li C, Chen H, et al. Overexpression of a tartary buckwheat R2R3-MYB transcription factor gene, FtMYB9, enhances tolerance to drought and salt stresses in transgenic Arabidopsis. J Plant Physiol. 2017;214:81–90.
Article
CAS
PubMed
Google Scholar
Dong J, Chen C, Chen Z. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol. 2003;51:21–37.
Article
CAS
PubMed
Google Scholar
Rushton DL, Tripathi P, Rabara RC, Lin J, Ringler P, Boken AK, et al. WRKY transcription factors: key components in abscisic acid signalling. Plant Biotechnol J. 2012;10:2–11.
Article
CAS
PubMed
Google Scholar
Schluttenhofer C, Yuan L. Regulation of specialized metabolism by WRKY transcription factors. Plant Physiol. 2015;167:295–306.
Article
CAS
PubMed
Google Scholar
Li S, Fu Q, Chen L, Huang W, Yu D. Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta. 2011;233:1237–52.
Article
CAS
PubMed
Google Scholar
He GH, Xu JY, Wang YX, Liu JM, Li PS, Chen M, et al. Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis. BMC Plant Biol. 2016;16:116.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yan H, Jia H, Chen X, Hao L, An H, Guo X. The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production. Plant Cell Physiol. 2014;55:2060–76.
Article
CAS
PubMed
Google Scholar
Nakashima K, Shinwari ZK, Sakuma Y, Seki M, Miura SK, Yamaguchi-Shinozaki K. Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration and high-salinity-responsive gene expression. Plant Mol Biol. 2000;42:657–65.
Article
CAS
PubMed
Google Scholar
Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun. 2002;290:998–1009.
Article
CAS
PubMed
Google Scholar
Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, et al. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell. 2006;18:1292–309.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K. Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci USA. 2006;103:18822–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen H, Hwang JE, Lim CJ, Kim DY, Lee SY, Lim CO. Arabidopsis DREB2C functions as a transcriptional activator of HsfA3 during the heat stress response. Biochem Biophys Res Commun. 2010;401:238–44.
Article
CAS
PubMed
Google Scholar
Agarwal PK, Jha B. Transcription factors in plants and ABA dependent and independent abiotic stress signaling. Biol Plant. 2010;54:201–12.
Article
CAS
Google Scholar
Lata C, Prasad M. Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot. 2011;62:4731–8.
Article
CAS
PubMed
Google Scholar
Yoshida T, Mogami J, Yamaguchi-Shinozaki K. ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr Opin Plant Biol. 2014;21:133–9.
Article
CAS
PubMed
Google Scholar
Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, et al. Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J. 2004;38:982–93.
Article
CAS
PubMed
Google Scholar
Maruyama K, Takeda M, Kidokoro S, Yamada K, Sakuma Y, Urano K, et al. Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A. Plant Physiol. 2009;150:1972–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pellegrineschi A, Reynolds M, Pacheco M, Brito RM, Almeraya R, Yamaguchi-Shinozaki K, et al. Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome. 2004;47:493–500.
Article
CAS
PubMed
Google Scholar
Suo H, Ma Q, Ye K, Yang C, Tang Y, Hao J, et al. Overexpression of AtDREB1A causes a severe dwarf phenotype by decreasing endogenous gibberellin levels in soybean [Glycine max (L.) Merr]. PLoS One. 2012;7:e45568.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bhatnagar-Mathur P, Rao JS, Vadez V, Dumbala SR, Rathore A, Yamaguchi-Shinozaki K, et al. Transgenic peanut overexpressing the DREB1A transcription factor has higher yields under drought stress. Mol Breed. 2014;33:327–40.
Article
CAS
Google Scholar
Wei T, Deng K, Gao Y, Liu Y, Yang M, Zhang L, et al. Arabidopsis DREB1B in transgenic Salvia miltiorrhiza increased tolerance to drought stress without stunting growth. Plant Physiol Biochem. 2016;104:17–28.
Article
CAS
PubMed
Google Scholar
Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, et al. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol. 2006;47:141–53.
Article
CAS
PubMed
Google Scholar
Schramm F, Larkindale J, Kiehlmann E, Ganguli A, Englich G, Vierling E, et al. A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant J. 2008;53:264–74.
Article
CAS
PubMed
Google Scholar
Büttner M, Singh KB. Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP), an ethylene-inducible, GCC box DNA-binding protein interacts with an ocs element binding protein. Proc Natl Acad Sci U S A. 1997;94:5961–6.
Article
PubMed
PubMed Central
Google Scholar
Zarei A, Korbes AP, Younessi P, Montiel G, Champion A, Memelink J. Two GCC boxes and AP2/ERF-domain transcription factor ORA59 in jasmonate/ethylene-mediated activation of the PDF1.2 promoter in Arabidopsis. Plant Mol Biol. 2011;75:321–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Licausi F, Ohme-Takagi M, Perata P. APETALA2/ethylene responsive factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol. 2013;199:639–49.
Article
CAS
PubMed
Google Scholar
Li Z, Tian Y, Xu J, Fu X, Gao J, Wang B, et al. A tomato ERF transcription factor, SlERF84, confers enhanced tolerance to drought and salt stress but negatively regulates immunity against Pseudomonas syringae pv. Tomato DC3000. Plant Physiol Biochem. 2018;132:683–95.
Article
CAS
PubMed
Google Scholar
Nie J, Wen C, Xi L, Lv S, Zhao Q, Kou Y, et al. The AP2/ERF transcription factor CmERF053 of chrysanthemum positively regulates shoot branching, lateral root, and drought tolerance. Plant Cell Rep. 2018;37:1049–60.
Article
CAS
PubMed
Google Scholar
Qin L, Wang L, Guo Y, Li Y, Ümüt H, Wang Y. An ERF transcription factor from Tamarix hispida, ThCRF1, can adjust osmotic potential and reactive oxygen species scavenging capability to improve salt tolerance. Plant Sci. 2017;265:154–66.
Article
CAS
PubMed
Google Scholar
Kim KN, Cheong YH, Gupta R, Luan S. Interaction specificity of Arabidopsis calcineurin B-like calcium sensors and their target kinases. Plant Physiol. 2000;124:1844–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takahashi S, Katagiri T, Yamaguchi-Shinozaki K, Shinozaki K. An Arabidopsis gene encoding a Ca2+−binding protein is induced by abscisic acid during dehydration. Plant Cell Physiol. 2000;41:898–903.
Article
CAS
PubMed
Google Scholar
Gao D, Knight MR, Trewavas AJ, Sattelmacher B, Plieth C. Self-reporting Arabidopsis expressing pH and [Ca2+] indicators unveil ion dynamics in the cytoplasm and in the apoplast under abiotic stress. Plant Physiol. 2004;134:898–908.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gong D, Guo Y, Schumaker KS, Zhu JK. The SOS3 family of calcium sensors and SOS2 family of protein kinases in Arabidopsis. Plant Physiol. 2004;134:919–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kolukisaoglu U, Weinl S, Blazevic D, Batistic O, Kudla J. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol. 2004;134:43–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hashimoto K, Kudla J. Calcium decoding mechanisms in plants. Biochimie. 2011;93:2054–9.
Article
CAS
PubMed
Google Scholar
Reddy AS. Calcium: silver bullet in signaling. Plant Sci. 2001;160:381–404.
Article
CAS
PubMed
Google Scholar
Jiang Z, Zhu S, Ye R, Xue Y, Chen A, An L, et al. Relationship between NaCl- and H2O2-induced cytosolic Ca2+ increases in response to stress in Arabidopsis. PLoS One. 2013;8:e76130.
Article
CAS
PubMed
PubMed Central
Google Scholar
Delk NA, Johnson KA, Chowdhury NI, Braam J. CML24, regulated in expression by diverse stimuli, encodes a potential Ca2+ sensor that functions in responses to abscisic acid, daylength, and ion stress. Plant Physiol. 2005;139:240–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamaguchi T, Aharon GS, Sottosanto JB. Blumwald E. Vacuolar Na+/H+ antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2+− and pH-dependent manner. Proc Natl Acad Sci U S A 2005;102: 16107–16112.
Magnan F, Ranty B, Charpenteau M, Sotta B, Galaud JP, Aldon D. Mutations in AtCML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid. Plant J. 2008;56:575–89.
Article
CAS
PubMed
Google Scholar
Qiao B, Zhang Q, Liu D, Wang H, Yin J, Wang R, et al. A calcium-binding protein, rice annexin OsANN1, enhances heat stress tolerance by modulating the production of H2O2. J Exp Bot. 2015;66:5853–66.
Article
CAS
PubMed
Google Scholar
Shiu SH, Bleecker AB. Plant receptor-like kinase gene family: Diversity, function, and signaling. Sci STKE. 2001;(113):re22.
Wei Z, Li J. Receptor-like protein kinases: key regulators controlling root hair development in Arabidopsis thaliana. J Integr Plant Biol. 2018;60:841–50.
Article
CAS
PubMed
Google Scholar
Lim CW, Yang SH, Shin KH, Lee SC, Kim SH. The AtLRK10L1.2, Arabidopsis, ortholog of wheat LRK10, is involved in ABA-mediated signaling and drought resistance. Plant Cell Rep. 2015;34:447–55.
Article
CAS
PubMed
Google Scholar
Sun XL, Sun M, Luo X, Ding XD, Cai H, Bai X, et al. Erratum to: a Glycine soja, ABA-responsive receptor-like cytoplasmic kinase, GsRLCK, positively controls plant tolerance to salt and drought stresses. Planta. 2013;237:1527–45.
Article
CAS
PubMed
Google Scholar
Vaid N, Pandey P, Srivastava VK, Tuteja N. Pea lectin receptor-like kinase functions in salinity adaptation without yield penalty, by alleviating osmotic and ionic stresses and upregulating stress-responsive genes. Plant Mol Biol. 2015;88:1–14.
Article
CAS
Google Scholar
de Lorenzo L, Merchan F, Laporte P, Thompson R, Clarke J, Sousa C, et al. A novel plant leucine-rich repeat receptor kinase regulates the response of Medicago truncatula roots to salt stress. Plant Cell. 2009;21:668–80.
Article
PubMed
PubMed Central
CAS
Google Scholar
Takatsuji H. Zinc-finger proteins: the classical zinc finger emerges in contemporary plant science. Plant Mol Biol. 1999;39:1073–8.
Article
CAS
PubMed
Google Scholar
Kim SH, Ahn YO, Ahn M, Jeong JC, Lee H, Kwak S. Cloning and characterization of an Orange gene that increases carotenoid accumulation and salt stress tolerance in transgenic sweetpotato cultures. Plant Physiol Biochem. 2013;70:445–54.
Article
CAS
PubMed
Google Scholar
Muthamilarasan M, Bonthala VS, Mishra AK, Khandelwal R, Khan Y, Roy R, et al. C2H2 type of zinc finger transcription factors in foxtail millet define response to abiotic stresses. Funct Integr Genomic. 2014;14:531–43.
Article
CAS
Google Scholar
Yue X, Que Y, Xu L, Deng S, Peng Y, Talbot NJ, et al. ZNF1 encodes a putative C2H2 zinc-finger protein essential for appressorium differentiation by the rice blast fungus Magnaporthe oryzae. Mol Plant-Microbe Interact. 2016;29:22–35.
Article
CAS
PubMed
Google Scholar
Chen J, Yang L, Yan X, Liu Y, Wang R, Fan T, et al. Zinc-finger transcription factor ZAT6 positively regulates cadmium tolerance through the glutathione-dependent pathway in Arabidopsis. Plant Physiol. 2016;171:707–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ciftci-Yilmaz S, Morsy MR, Song L, Coutu A, Krizek BA, Lewis MW, et al. The EAR-motif of the Cys2/His2-type zinc finger protein Zat7 plays a key role in the defense response of Arabidopsis to salinity stress. J Biol Chem. 2007;282:9260–8.
Article
CAS
PubMed
Google Scholar
Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, et al. Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol. 2004;136:2734–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mittler R, Kim Y, Song L, Coutu J, Coutu A, Ciftci-Yilmaz S, et al. Gain- and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress. FEBS Lett. 2006;580:6537–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rossel JB, Wilson PB, Hussain D, Woo NS, Gordon MJ, Mewett OP, et al. Systemic and intracellular responses to photooxidative stress in Arabidopsis. Plant Cell. 2007;19:4091–110.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nguyen XC, Kim SH, Hussain S, An J, Yoo Y, Han HJ, et al. A positive transcription factor in osmotic stress tolerance, ZAT10, is regulated by MAP kinases in Arabidopsis. J Plant Biol. 2016;59:55–61.
Article
CAS
Google Scholar
Song H, Zhao R, Fan P, Wang X, Chen X, Li Y. Overexpression of AtHsp90.2, AtHsp90.5 and AtHsp90.7 in Arabidopsis thaliana enhances plant sensitivity to salt and drought stresses. Planta. 2009;229:955–64.
Article
CAS
PubMed
Google Scholar
Zhou M, Li D, Li Z, Hu Q, Yang C, Zhu L, et al. Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. Plant Physiol. 2013;161:1375–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo H, Kausch AP, Hu Q, Nelson K, Wipff JK, Fricker CCR, et al. Controlling transgene escape in GM creeping bentgrass. Mol Breed. 2005;16:185–8.
Article
Google Scholar
Bart R, Chern M, Park CJ, Battley L, Ronald PC. A novel system for gene slienceing using siRNAs in rice leaf and stem-derived protoplasts. Plant Methods. 2006;2:13.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36.
Article
PubMed
PubMed Central
CAS
Google Scholar
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28:511–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schulze SK, Kanwar R, Gölzenleuchter M, Therneau TM, Beutler AS. SERE: single-parameter quality control and sample comparison for RNA-Seq. BMC Genomics. 2012;13:524.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Z, Baldwin CM, Hu Q, Liu H, Luo H. Heterologous expression of Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic creeping bentgrass (Agrostis stolonifera L.). Plant Cell Environ. 2010;33:272–89.
Article
CAS
PubMed
Google Scholar