Yuan HY, Shyamali S, Albert V, Bett KE. Flowering and growth responses of cultivated lentil and wild lens germplasm toward the differences in red to far-red ratio and photosynthetically active radiation. Front Plant Sci. 2017;8:386.
Yang F, Liao D, Wu X, Gao R, Fan Y, Raza MA, Wang X, Yong T, Liu W, Liu JJFCR: Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems. 2017, 203(Complete):16–23.
Feng Y, Wang X, Liao D, Lu F, Gao R, Liu W, Yong T, Wu X, Du J, Jiang LJAJ: Yield Response to Different Planting Geometries in Maize–Soybean Relay Strip Intercropping Systems 2015, 107(1):296.
Gelderen KV, Kang C, Paalman R, Keuskamp DH, Hayes S, Pierik RJPC: Far-red Light Detection in the Shoot Regulates Lateral Root Development through the HY5 Transcription Factor. 2018:tpc.00771.02017.
Ballaré CL, Pierik RJPC, Environment: The shade avoidance syndrome: Multiple signals and ecological consequences 2017, 40.
Park Y, Runkle ESJE, Botany E: Far-red radiation promotes growth of seedlings by increasing leaf expansion and whole-plant net assimilation 2017, 136:41–49.
Feng Y, Shan H, Gao R, Liu W, Yong T, Wang X, Wu X, Yang WJFCR: Growth of soybean seedlings in relay strip intercropping systems in relation to light quantity and red:far-red ratio 2014, 155(155):245–253.
Ruberti I, Sessa G, Ciolfi A, Possenti M, Carabelli M, Morelli GJBA: Plant adaptation to dynamically changing environment: The shade avoidance response 2012, 30(5):1047–1058.
Yang F, Fan Y, Wu X, Cheng Y, Liu Q, Feng L, Chen J, Wang Z, Wang X, Yong TJFiPS: Auxin-to-Gibberellin Ratio as a Signal for Light Intensity and Quality in Regulating Soybean Growth and Matter Partitioning. 2018, 9:56-.
Li T, Liu LN, Jiang CD, Liu YJ, Shi LJJPPB: Effects of mutual shading on the regulation of photosynthesis in field-grown sorghum 2014, 137(8):31–38.
Feng Y, Feng L, Liu Q, Wu X, Fan Y, Raza MA, Cheng Y, Chen J, Wang X, Yong TJE et al: Effect of interactions between light intensity and red-to- far-red ratio on the photosynthesis of soybean leaves under shade condition 2018, 150.
Park Y, Runkle ESJE, Botany E: Far-red radiation and photosynthetic photon flux density independently regulate seedling growth but interactively regulate flowering 2018, 155:206–216.
Demotes-Mainard S, Péron T, Corot A, Bertheloot J, Gourrierec JL, Pelleschi-Travier S, Crespel L, Morel P, Huché-Thélier L, Boumaza RJE et al: Plant responses to red and far-red lights, applications in horticulture 2015, 309.
Smith H, . %J Nature: Phytochromes and light signal perception by plants--an emerging synthesis. 2000, 407(6804):585–591.
Wherley BG, Gardner DS, Metzger JDJCS: Tall Fescue Photomorphogenesis as Influenced by Changes in the Spectral Composition and Light Intensity 2005, 45(2):562–568.
Razzak MA, Ranade SS, Strand Å, García-Gil MRJPC, Environment: Differential response of Scots pine seedlings to variable intensity and ratio of R and FR light 2017, 40(8):1332.
Mccree KJJAM: The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. 1971, 9(71):191–216.
Zhen S, Iersel MWVJJoPP: Far-red light is needed for efficient photochemistry and photosynthesis. 2017, 209:115–122.
Duysens LNM, Amesz JJB-BeBA: Function and identification of two photochemical systems in photosynthesis. 1962, 64(2):243–260.
Wang L, Liang W, Xing J, Tan F, Chen Y, Huang L, Cheng C, Chen WJJoPR: Dynamics of Chloroplast Proteome in Salt-Stressed Mangrove Kandelia candel (L) Druce 2013, 12(11):5124–5136.
Deng X, Liu Y, Xu X, Liu D, Zhu G, Yan X, Wang Z, Yan YJFiPS: Comparative Proteome Analysis of Wheat Flag Leaves and Developing Grains Under Water Deficit 2018, 9.
Zhang K, Liu H, Song J, Wu W, Li K, Zhang JJBPB: Physiological and comparative proteome analyses reveal low-phosphate tolerance and enhanced photosynthesis in a maize mutant owing to reinforced inorganic phosphate recycling 2016, 16(1):129.
Wang L, Cao H, Chen C, Yue C, Hao X, Yang Y, Wang XJJoP: Complementary transcriptomic and proteomic analyses of a chlorophyll-deficient tea plant cultivar reveal multiple metabolic pathway changes 2016, 130:160–169.
Yushan WU, Yang F, Gong W, Ahmed S, Fan Y, Xiaoling WU, Yong T, Liu W, Shu K, Liu JJJoIA: Shade adaptive response and yield analysis of different soybean genotypes in relay intercropping systems 2017, 16(6):1331–1340.
Tacarindua CRP, Shiraiwa T, Homma K, Kumagai E, Sameshima RJFCR: The effects of increased temperature on crop growth and yield of soybean grown in a temperature gradient chamber 2013, 154:74–81.
Gong W, Jiang C, Wu Y, Chen H, Liu W, Yang WJP: Tolerance vs. avoidance: two strategies of soybean (Glycine max) seedlings in response to shade in intercropping. 2015, 53(2):259–268.
Gommers CMM, Visser EJW, Onge KR, St, Voesenek LACJ, Ronald PJTiPS: Shade tolerance: when growing tall is not an option 2013, 18(2):65–71.
Lewis CMJAJoB: The Dependence of the Quantum Yield of Chlorella Photosynthesis on Wave Lenghth of Light. 1943, 30(3):165–178.
Zhou H, Yu Z, Ye ZJSH: Key proteins associated to coloured compounds of peach peel using iTRAQ proteomic techniques during development and postharvest. 2018, 239:123–132.
Baginsky S, Gruissem WJJoEB: Chloroplast proteomics: potentials and challenges. 2004, 55(400):1213–1220.
Heyes DJ, Hunter CNJTiBS: Making light work of enzyme catalysis: protochlorophyllide oxidoreductase. 2005, 30(11):642–649.
Bennett J, Schwender JR, Shaw EK, Tempel N, Ledbetter MC, Williams RSJBeBA: failure of corn leaves to acclimate to low irradiance. Role of protochlorophyllide reductase in regulating levels of five chlorophyll-binding proteins 1987, 892(1):118–129.
Forreiter C, Van Cleve B, Schmidt A, Apel KJP: Evidence for a general light-dependent negative control of NADPH-protochlorophyllide oxidoreductase in angiosperms 1991, 183(1):126–132.
Sims DA, Gamon JAJRSoE: Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. 2002, 81(2):337–354.
Chitnis VP, Ke A, Chitnis PRJPP: The PsaD Subunit of Photosystem I (Mutations in the Basic Domain Reduce the Level of PsaD in the Membranes). 1997, 115(4):1699–1705.
Nama S, Madireddi SK, Devadasu ER, Subramanyam RJJoP, B-biology P: High light induced changes in organization, protein profile and function of photosynthetic machinery in Chlamydomonas reinhardtii 2015, 152:367–376.
Srilatha N, Sai Kiran M, Elsin Raju D, Rajagopal SJJPPB: High light induced changes in organization, protein profile and function of photosynthetic machinery in Chlamydomonas reinhardtii. 2015, 152(Pt B):367–376.
Timperio AM, Gevi F, Ceci LR, Zolla LJPP, Biochemistry: Acclimation to intense light implies changes at the level of trimeric subunits involved in the structural organization of the main light-harvesting complex of photosystem II (LHCII) and their isoforms 2012, 50(1):8–14.
Ahmadova N, Mamedov FJPR: Formation of tyrosine radicals in photosystem II under far-red illumination. 2018, 136(1):93–106.
Ivanov AG, Sane PV, Simidjiev I, Park YI, Huner NPA, Öquist GJB-B: Restricted capacity for PSI-dependent cyclic electron flow in Δ petE mutant compromises the ability for acclimation to iron stress in Synechococcus sp. PCC 7942 cells ☆. 2012, 1817(8):1277–1284.
Okada KJB, Communications BR: PetH is rate-controlling in the interaction between PetH, a component of the supramolecular complex with photosystem II, and PetF, a light-dependent electron transfer protein. 2009, 389(2):394–398.
Chuang-Dao J, Xin W, Hui-Yuan G, Lei S, Wah Soon CJPP: Systemic regulation of leaf anatomical structure, photosynthetic performance, and high-light tolerance in sorghum 2011, 155(3):1416–1424.
Gupta AK, Kaur NJJoB: Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. 2005, 30(5):761–776.
Yang L, Chen J, Sun X, Li J, Chen N: Inhibition of sucrose and galactosyl-sucrose oligosaccharide metabolism in leaves and fruits of melon (Cucumis melo L.) under low light stress. Sci Hortic-Amsterdam. 2019;244:343–51.
Lee H, Lee BR, Islam MT, La VH, Park SH, Bae DW, Kim TH. Cultivar variation in hormone- and sugar-response reveals abscisic acid-responsive sucrose phloem loading at the early regenerative stage is a significant determinant of seed yield in Brassica napus. Environ Exp Bot. 2020;169:103917.
Article
CAS
Google Scholar
Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith FJAC: Colorimetric method for determination of sugars and related substances 1956, 28(3):350–356.
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe MJNAR: KEGG as a reference resource for gene and protein annotation 2016, 44(Database issue):D457-D462.
Yuan S, Zhang ZW, Zheng C, Zhao ZY, Wang Y, Feng LY, Niu GQ, Wang CQ, Wang JH, Feng H, et al. Arabidopsis cryptochrome 1 functions in nitrogen regulation of flowering. P Natl Acad Sci USA. 2016;113(27):7661–6.
Article
CAS
Google Scholar
Hoagland DR, Arnon DIJCaesc: The water-culture method for growing plants without soil. 1950, 347(5406):357–359.