Petrov V, Hille J, Mueller-Roeber B, Gechev TS. ROS-mediated abiotic stress-induced programmed cell death in plants. Front Plant Sci. 2015;6:69.
Article
PubMed
PubMed Central
Google Scholar
Schroeder JI, Delhaize E, Frommer WB, Guerinot ML, Harrison MJ, Herrera-Estrella L, Horie T, Kochian LV, Munns R, Nishizawa NK, et al. Using membrane transporters to improve crops for sustainable food production. Nature. 2013;497(7447):60–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blumwald E. Sodium transport and salt tolerance in plants. Curr Opin Cell Biol. 2000;12(4):431–4.
Article
CAS
PubMed
Google Scholar
Volkov V. Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes. Front Plant Sci. 2015;6:873.
PubMed
PubMed Central
Google Scholar
Bassil E, Blumwald E. The ins and outs of intracellular ion homeostasis: NHX-type cation/H+ transporters. Curr Opin Plant Biol. 2014;22:1–6.
Article
CAS
PubMed
Google Scholar
Shi H, Ishitani M, Kim C, Zhu JK. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci U S A. 2000;97(12):6896–901.
Article
CAS
PubMed
PubMed Central
Google Scholar
El Mahi H, Perez-Hormaeche J, De Luca A, Villalta I, Espartero J, Gamez-Arjona F, Fernandez JL, Bundo M, Mendoza I, Mieulet D, et al. A critical role of sodium flux via the plasma membrane Na+/H+ exchanger SOS1 in the salt tolerance of rice. Plant Physiol. 2019;180(2):1046–65.
Article
PubMed
PubMed Central
CAS
Google Scholar
Olias R, Eljakaoui Z, Pardo JM, Belver A. The Na+/H+ exchanger SOS1 controls extrusion and distribution of Na+ in tomato plants under salinity conditions. Plant Signal Behav. 2009;4(10):973–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu JK. Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol. 2000;124(3):941–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo Y, Halfter U, Ishitani M, Zhu JK. Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell. 2001;13(6):1383–400.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar S, Kalita A, Srivastava R, Sahoo L. Co-expression of Arabidopsis NHX1 and bar improves the tolerance to salinity, oxidative stress, and herbicide in transgenic mungbean. Front Plant Sci. 2017;8:1896.
Article
PubMed
PubMed Central
Google Scholar
Moghaieb RE, Sharaf AN, Soliman MH, El-Arabi NI, Momtaz OA. An efficient and reproducible protocol for the production of salt tolerant transgenic wheat plants expressing the Arabidopsis AtNHX1 gene. GM Crops Food. 2014;5(2):132–8.
Article
PubMed
PubMed Central
Google Scholar
Zeng Y, Li Q, Wang H, Zhang J, Du J, Feng H, Blumwald E, Yu L, Xu G. Two NHX-type transporters from Helianthus tuberosus improve the tolerance of rice to salinity and nutrient deficiency stress. Plant Biotechnol J. 2018;16(1):310–21.
Article
CAS
PubMed
Google Scholar
Qiu QS. Plant endosomal NHX antiporters: activity and function. Plant Signal Behav. 2016;11(5):e1147643.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bassil E, Ohto MA, Esumi T, Tajima H, Zhu Z, Cagnac O, Belmonte M, Peleg Z, Yamaguchi T, Blumwald E. The Arabidopsis intracellular Na+/H+ antiporters NHX5 and NHX6 are endosome associated and necessary for plant growth and development. Plant Cell. 2011;23(1):224–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang L, Ma H, Chen T, Pen J, Yu S, Zhao X. Morphological and physiological responses of cotton (Gossypium hirsutum L.) plants to salinity. PLoS One. 2014;9(11):e112807.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ashraf J, Zuo D, Wang Q, Malik W, Zhang Y, Abid MA, Cheng H, Yang Q, Song G. Recent insights into cotton functional genomics: progress and future perspectives. Plant Biotechnol J. 2018;16(3):699–713.
Article
PubMed
PubMed Central
Google Scholar
Cominelli E, Conti L, Tonelli C, Galbiati M. Challenges and perspectives to improve crop drought and salinity tolerance. New Biotechnol. 2013;30(4):355–61.
Article
CAS
Google Scholar
Mittler R, Blumwald E. Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol. 2010;61:443–62.
Article
CAS
PubMed
Google Scholar
Peng Z, He S, Gong W, Sun J, Pan Z, Xu F, Lu Y, Du X. Comprehensive analysis of differentially expressed genes and transcriptional regulation induced by salt stress in two contrasting cotton genotypes. BMC Genomics. 2014;15:760.
Article
PubMed
PubMed Central
CAS
Google Scholar
Long L, Yang W, Liao P, Guo Y, Kumar A, Gao W. Transcriptome analysis reveals differentially expressed ERF transcription factors associated with salt response in cotton. Plant Sci. 2019;281:72–81.
Article
CAS
PubMed
Google Scholar
Xu F, Liu H, Xu Y, Zhao J, Guo Y, Long L, Gao W, Song C. Heterogeneous expression of the cotton R2R3-MYB transcription factor GbMYB60 increases salt sensitivity in transgenic Arabidopsis. Plant Cell Tissue Organ Cult. 2018;133(1):15–25.
Article
CAS
Google Scholar
Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, Zhang J, Saski CA, Scheffler BE, Stelly DM, et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol. 2015;33(5):531–7.
Article
CAS
PubMed
Google Scholar
Wang M, Tu L, Yuan D, Zhu D, Shen C, Li J, Liu F, Pei L, Wang P, Zhao G, et al. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet. 2019;51(2):224–9.
Article
CAS
PubMed
Google Scholar
Gao W, Long L, Tian X, Xu F, Liu J, Singh PK, Botella JR, Song C. Genome editing in cotton with the CRISPR/Cas9 system. Front Plant Sci. 2017;8:1364.
Article
PubMed
PubMed Central
Google Scholar
Long L, Guo D, Gao W, Yang W, Hou L, Ma X, Miao Y, Botella JR, Song C. Optimization of CRISPR/Cas9 genome editing in cotton by improved sgRNA expression. Plant Methods. 2018;14(1):85–93.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gao W, Xu F, Long L, Li Y, Zhang J, Chong L, Botella JR, Song C. The gland localized CGP1 controls gland pigmentation and gossypol accumulation in cotton. Plant Biotechnol J. 2020. https://doi.org/10.1111/pbi.13323.
Chen X, Lu X, Shu N, Wang D, Wang S, Wang J, Guo L, Guo X, Fan W, Lin Z, et al. GhSOS1, a plasma membrane Na+/H+ antiporter gene from upland cotton, enhances salt tolerance in transgenic Arabidopsis thaliana. PLoS One. 2017;12(7):e0181450.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mu C, Zhou L, Shan L, Li F, Li Z. Phosphatase GhDsPTP3a interacts with annexin protein GhANN8b to reversely regulate salt tolerance in cotton (Gossypium spp.). New Phytol. 2019;223(4):1856–72.
Article
CAS
PubMed
Google Scholar
Cao B, Long D, Zhang M, Liu C, Xiang Z, Zhao A. Molecular characterization and expression analysis of the mulberry Na+/H+ exchanger gene family. Plant Physiol Biochem. 2016;99:49–58.
Article
CAS
PubMed
Google Scholar
Fukuda A, Nakamura A, Hara N, Toki S, Tanaka Y. Molecular and functional analyses of rice NHX-type Na+/H+ antiporter genes. Planta. 2011;233(1):175–88.
Article
CAS
PubMed
Google Scholar
Hima Kumari P, Anil Kumar S, Ramesh K, Sudhakar Reddy P, Nagaraju M, Bhanu Prakash A, Shah T, Henderson A, Srivastava RK, Rajasheker G, et al. Genome-wide identification and analysis of Arabidopsis sodium proton antiporter (NHX) and human sodium proton exchanger (NHE) homologs in Sorghum bicolor. Genes. 2018;9(5):236.
Article
PubMed Central
CAS
Google Scholar
Sandhu D, Pudussery MV, Kaundal R, Suarez DL, Kaundal A, Sekhon RS. Molecular characterization and expression analysis of the Na+/H+ exchanger gene family in Medicago truncatula. Funct Integr Genomics. 2018;18(2):141–53.
Article
CAS
PubMed
Google Scholar
Yokoi S, Quintero FJ, Cubero B, Ruiz MT, Bressan RA, Hasegawa PM, Pardo JM. Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J. 2002;30(5):529–39.
Article
CAS
PubMed
Google Scholar
Sharma H, Taneja M, Upadhyay SK. Identification, characterization and expression profiling of cation-proton antiporter superfamily in Triticum aestivum L. and functional analysis of TaNHX4-B. Genomics. 2020;112(1):356–70.
Article
PubMed
CAS
Google Scholar
Li F, Fan G, Wang K, Sun F, Yuan Y, Song G, Li Q, Ma Z, Lu C, Zou C, et al. Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet. 2014;46(6):567–72.
Article
CAS
PubMed
Google Scholar
Wang K, Wang Z, Li F, Ye W, Wang J, Song G, Yue Z, Cong L, Shang H, Zhu S, et al. The draft genome of a diploid cotton Gossypium raimondii. Nat Genet. 2012;44(10):1098–103.
Article
CAS
PubMed
Google Scholar
Gao W, Xu F, Guo D, Zhao J, Liu J, Guo Y, Singh PK, Ma X, Long L, Botella JR, et al. Calcium-dependent protein kinases in cotton: insights into early plant responses to salt stress. BMC Plant Biol. 2018;18(1):15.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jauh GY, Fischer AM, Grimes HD, Ryan CA, Rogers JC. delta-Tonoplast intrinsic protein defines unique plant vacuole functions. Proc Natl Acad Sci U S A. 1998;95(22):12995–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Munns R, Gilliham M. Salinity tolerance of crops - what is the cost? New Phytol. 2015;208(3):668–73.
Article
CAS
PubMed
Google Scholar
Qin YM, Zhu YX. How cotton fibers elongate: a tale of linear cell-growth mode. Curr Opin Plant Biol. 2011;14(1):106–11.
Article
CAS
PubMed
Google Scholar
Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, et al. Genome sequence of the palaeopolyploid soybean. Nature. 2010;463(7278):178–83.
Article
CAS
PubMed
Google Scholar
Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J, Jin D, Llewellyn D, Showmaker KC, Shu S, Udall J, et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature. 2012;492(7429):423–7.
Article
CAS
PubMed
Google Scholar
Wang X, Guo H, Wang J, Lei T, Liu T, Wang Z, Li Y, Lee TH, Li J, Tang H, et al. Comparative genomic de-convolution of the cotton genome revealed a decaploid ancestor and widespread chromosomal fractionation. New Phytol. 2016;209(3):1252–63.
Article
CAS
PubMed
Google Scholar
Sze H, Chanroj S. Plant endomembrane dynamics: studies of K+/H+ antiporters provide insights on the effects of pH and ion homeostasis. Plant Physiol. 2018;177(3):875–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shang X, Cao Y, Ma L. Alternative splicing in plant genes: a means of regulating the environmental fitness of plants. Int J Mol Sci. 2017;18(2):432.
Article
PubMed Central
CAS
Google Scholar
Laloum T, Martin G, Duque P. Alternative splicing control of abiotic stress responses. Trends Plant Sci. 2018;23(2):140–50.
Article
CAS
PubMed
Google Scholar
Cooper TA. Alternative splicing regulation impacts heart development. Cell. 2005;120(1):1–2.
Article
CAS
PubMed
Google Scholar
Yu J, Jung S, Cheng CH, Ficklin SP, Lee T, Zheng P, Jones D, Percy RG, Main D. CottonGen: a genomics, genetics and breeding database for cotton research. Nucleic Acids Res. 2014;42:D1229–36.
Article
CAS
PubMed
Google Scholar
Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19(9):1639–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sturn A, Quackenbush J, Trajanoski Z. Genesis: cluster analysis of microarray data. Bioinformatics. 2002;18(1):207–8.
Article
CAS
PubMed
Google Scholar
Gao W, Long L, Xu L, Lindsey K, Zhang X, Zhu L. Suppression of the homeobox gene HDTF1 enhances resistance to Verticillium dahliae and Botrytis cinerea in cotton. J Integr Plant Biol. 2016;58(5):503–13.
Article
CAS
PubMed
Google Scholar
Long L, Xu F, Zhao J, Li B, Xu L, Gao W. GbMPK3 overexpression increases cotton sensitivity to Verticillium dahliae by regulating salicylic acid signaling. Plant Sci. 2020. https://doi.org/10.1016/j.plantsci.2019.110374.
Bai L, Ma X, Zhang G, Song S, Zhou Y, Gao L, Miao Y, Song C. A receptor-like kinase mediates ammonium homeostasis and is important for the polar growth of root hairs in Arabidopsis. Plant Cell. 2014;26(4):1497–511.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma X, Zhang X, Yang L, Tang M, Wang K, Wang L, Bai L, Song C. Hydrogen peroxide plays an important role in PERK4-mediated abscisic acid-regulated root growth in Arabidopsis. Funct Plant Biol. 2019;46(2):165–74.
Article
CAS
PubMed
Google Scholar
Long L, Zhao J, Xu F, Yang W, Liao P, Gao Y, Gao W, Song C. Silencing of GbANS reduces cotton resistance to Verticillium dahliae through decreased ROS scavenging during the pathogen invasion process. Plant Cell Tissue Organ Cult. 2018;135(2):213–21.
Article
CAS
Google Scholar
Rus A, Yokoi S, Sharkhuu A, Reddy M, Lee BH, Matsumoto TK, Koiwa H, Zhu JK, Bressan RA, Hasegawa PM. AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proc Natl Acad Sci U S A. 2001;98(24):14150–5.
Article
CAS
PubMed
PubMed Central
Google Scholar