Song C, Liu Y, Song A, Dong G, Zhao H, Sun W, Ramakrishnan S, Wang Y, Wang S, Li T. The Chrysanthemum nankingense genome provides insights into the evolution and diversification of chrysanthemum flowers and medicinal traits. Mol Plant. 2018.
Kebrom TH, Mullet JE. Transcriptome profiling of tiller buds provides new insights into phyB regulation of tillering and indeterminate growth in Sorghum. Plant Physiol. 2016;170(4):2232–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leeggangers H, Nijveen H, Bigas JN, Hilhorst HW, Immink RG: Molecular regulation of temperature-dependent floral induction in Tulipa gesneriana. Plant Physiol 2017:pp. 01758.02016.
Bhandawat A, Singh G, Seth R, Singh P, Sharma RK. Genome-wide transcriptional profiling to elucidate key candidates involved in bud burst and rattling growth in a subtropical bamboo (Dendrocalamus hamiltonii). Front Plant Sci. 2017;7:2038.
Article
PubMed
PubMed Central
Google Scholar
Fan Z, Li J, Li X, Wu B, Wang J, Liu Z, Yin H. Genome-wide transcriptome profiling provides insights into floral bud development of summer-flowering Camellia azalea. Sci Rep. 2015;5:9729.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ni J, Zhao M-L, Chen M-S, Pan B-Z, Tao Y-B, Xu Z-F. Comparative transcriptome analysis of axillary buds in response to the shoot branching regulators gibberellin A3 and 6-benzyladenine in Jatropha curcas. Sci Rep. 2017;7(1):11417.
Article
PubMed
PubMed Central
CAS
Google Scholar
Garg R, Singh VK, Rajkumar MS, Kumar V, Jain M. Global transcriptome and coexpression network analyses reveal cultivar-specific molecular signatures associated with seed development and seed size/weight determination in chickpea. Plant J. 2017;91(6):1088–107.
Article
CAS
PubMed
Google Scholar
Porto DD, Bruneau M, Perini P, Anzanello R, Renou J-P, HPd S, Fialho FB. revers LF: transcription profiling of the chilling requirement for bud break in apples: a putative role for FLC-like genes. J Exp Bot. 2015;66(9):2659–72.
Article
CAS
PubMed
Google Scholar
Rabot A, Henry C, Ben Baaziz K, Mortreau E, Azri W, Lothier J, Hamama L, Boummaza R, Leduc N, Pelleschi-Travier S. Insight into the role of sugars in bud burst under light in the rose. Plant Cell Physiol. 2012;53(6):1068–82.
Article
CAS
PubMed
Google Scholar
Mason MG, Ross JJ, Babst BA, Wienclaw BN, Beveridge CA. Sugar demand, not auxin, is the initial regulator of apical dominance. Proc Natl Acad Sci. 2014;111(16):6092–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barbier FF, Lunn JE, Beveridge CA. Ready, steady, go! A sugar hit starts the race to shoot branching. Curr Opin Plant Biol. 2015;25:39–45.
Article
CAS
PubMed
Google Scholar
Janssen BJ, Drummond RS, Snowden KC. Regulation of axillary shoot development. Curr Opin Plant Biol. 2014;17:28–35.
Article
PubMed
Google Scholar
Stirnberg P, Furner IJ, Ottoline Leyser H. MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. Plant J. 2007;50(1):80–94.
Article
CAS
PubMed
Google Scholar
Stirnberg P, van De Sande K, Leyser HO. MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development. 2002;129(5):1131–41.
CAS
PubMed
Google Scholar
Crawford S, Shinohara N, Sieberer T, Williamson L, George G, Hepworth J, Müller D, Domagalska MA, Leyser O: Strigolactones enhance competition between shoot branches by dampening auxin transport. Development 2010:dev. 051987.
Domagalska MA, Leyser O. Signal integration in the control of shoot branching. Nat Rev Mol Cell Biol. 2011;12(4):211.
Article
CAS
PubMed
Google Scholar
Chatfield SP, Stirnberg P, Forde BG, Leyser O. The hormonal regulation of axillary bud growth in Arabidopsis. Plant J. 2000;24(2):159–69.
Article
CAS
PubMed
Google Scholar
Faust JE, Heins RD. High night temperatures do not cause poor lateral branching of chrysanthemum. Hort Science. 1992;27(9):981–2.
Article
Google Scholar
Yang J, Chen X, Zhu C, Peng X, He X, Fu J, Ouyang L, Bian J, Hu L, Sun X. RNA-seq reveals differentially expressed genes of rice (Oryza sativa) spikelet in response to temperature interacting with nitrogen at meiosis stage. BMC Genomics. 2015;16(1):959.
Article
PubMed
PubMed Central
CAS
Google Scholar
Prasad P, Boote K, Allen L Jr, Sheehy J, Thomas J. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crop Res. 2006;95(2–3):398–411.
Article
Google Scholar
Jagadish S, Muthurajan R, Oane R, Wheeler TR, Heuer S, Bennett J, Craufurd PQ. Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.). J Exp Bot. 2009;61(1):143–56.
Article
PubMed Central
CAS
Google Scholar
Matsui T, Omasa K. Rice (Oryza sativa L.) cultivars tolerant to high temperature at flowering: anther characteristics. Ann Bot. 2002;89(6):683–7.
Article
PubMed
PubMed Central
Google Scholar
Endo M, Tsuchiya T, Hamada K, Kawamura S, Yano K, Ohshima M, Higashitani A, Watanabe M, Kawagishi-Kobayashi M. High temperatures cause male sterility in rice plants with transcriptional alterations during pollen development. Plant Cell Physiol. 2009;50(11):1911–22.
Article
CAS
PubMed
Google Scholar
Zhang X, Li J, Liu A, Zou J, Zhou X, Xiang J, Rerksiri W, Peng Y, Xiong X, Chen X. Expression profile in rice panicle: insights into heat response mechanism at reproductive stage. PLoS One. 2012;7(11):e49652.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kelliher T, Egger RL, Zhang H, Walbot V. Unresolved issues in pre-meiotic anther development. Front Plant Sci. 2014;5:347.
Article
PubMed
PubMed Central
Google Scholar
Asada K. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Biol. 1999;50(1):601–39.
Article
CAS
Google Scholar
Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol. 2010;30(3):161–75.
Article
CAS
PubMed
Google Scholar
Ahmad P, Nabi G, Jeleel C, Umar S: Free radical production, oxidative damage and antioxidant defense mechanisms in plants under abiotic stress. Oxidative stress: role of antioxidants in plants Studium Press, New Delhi 2011:19–53.
Hodges DM, DeLong JM, Forney CF, Prange RK. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta. 1999;207(4):604–11.
Article
CAS
Google Scholar
Koyro H-W, Ahmad P, Geissler N: Abiotic stress responses in plants: an overview. In: Environmental adaptations and stress tolerance of plants in the era of climate change. Springer; 2012: 1–28.
Liu W, Yu K, He T, Li F, Zhang D, Liu J. The low temperature induced physiological responses of Avena nuda L., a cold-tolerant plant species. Sci World J. 2013;2013:7.
Google Scholar
Kochhar S, Watkins CB, Conklin PL, Brown SK. A quantitative and qualitative analysis of antioxidant enzymes in relation to susceptibility of apples to superficial scald. J Am Soc Hortic Sci. 2003;128(6):910–6.
Article
CAS
Google Scholar
Hall CR, Dickson MW. Economic, environmental, and health/well-being benefits associated with green industry products and services: a review. J Environ Hortic. 2011;29(2):96–103.
Google Scholar
Teixeira da Silva J. Tissue culture and cryopreservation of chrysanthemum: a review. Biotechnol Adv. 2003;21:715–66.
Article
CAS
PubMed
Google Scholar
Savicka M, Škute N. Effects of high temperature on malondialdehyde content, superoxide production and growth changes in wheat seedlings (Triticum aestivum L.). Ekologija. 2010;56(1):26–33.
Article
CAS
Google Scholar
Kebrom TH, Mullet JE. Photosynthetic leaf area modulates tiller bud outgrowth in sorghum. Plant Cell Environ. 2015;38(8):1471–8.
Article
CAS
PubMed
Google Scholar
Chuine I. A unified model for budburst of trees. J Theor Biol. 2000;207(3):337–47.
Article
CAS
PubMed
Google Scholar
Kramer K, Leinonen I, Loustau D. The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: an overview. Int J Biometeorol. 2000;44(2):67–75.
Article
CAS
PubMed
Google Scholar
Shimizu-Sato S, Mori H. Control of outgrowth and dormancy in axillary buds. Plant Physiol. 2001;127(4):1405–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dun EA, Ferguson BJ, Beveridge CA. Apical dominance and shoot branching. Divergent opinions or divergent mechanisms? Plant Physiology. 2006;142(3):812–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ward SP, Leyser O. Shoot branching. Curr Opin Plant Biol. 2004;7(1):73–8.
Article
CAS
PubMed
Google Scholar
Wang Q, Liu N, Yang X, Tu L, Zhang X. Small RNA-mediated responses to low- and high-temperature stresses in cotton. Sci Rep. 2016;6:35558.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou L, Liu Y, Liu Z, Kong D, Duan M, Luo L. Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J Exp Bot. 2010;61(15):4157–68.
Article
CAS
PubMed
Google Scholar
Fujii H, Chiou T-J, Lin S-I, Aung K, Zhu J-K. A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol. 2005;15(22):2038–43.
Article
CAS
PubMed
Google Scholar
Xin M, Wang Y, Yao Y, Xie C, Peng H, Ni Z, Sun Q. Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biol. 2010;10(1):123.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lv D-K, Bai X, Li Y, Ding X-D, Ge Y, Cai H, Ji W, Wu N, Zhu Y-M. Profiling of cold-stress-responsive miRNAs in rice by microarrays. Gene. 2010;459(1–2):39–47.
Article
CAS
PubMed
Google Scholar
Nahar K, Hasanuzzaman M, Alam M, Fujita M. Exogenous spermidine alleviates low temperature injury in mung bean (Vigna radiata L.) seedlings by modulating ascorbate-glutathione and glyoxalase pathway. Int J Mol Sci. 2015;16(12):30117–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peng T, Zhu X, Duan N, LIU JH. P tr BAM 1, a β-amylase-coding gene of P oncirus trifoliata, is a CBF regulon member with function in cold tolerance by modulating soluble sugar levels. Plant Cell Environ. 2014;37(12):2754–67.
Article
CAS
PubMed
Google Scholar
Fernández AP, Strand Å. Retrograde signaling and plant stress: plastid signals initiate cellular stress responses. Curr Opin Plant Biol. 2008;11(5):509–13.
Article
PubMed
CAS
Google Scholar
Guy C, Kaplan F, Kopka J, Selbig J, Hincha DK. Metabolomics of temperature stress. Physiol Plant. 2008;132(2):220–35.
CAS
PubMed
Google Scholar
Yamasaki H, Abdel-Ghany SE, Cohu CM, Kobayashi Y, Shikanai T, Pilon M. Regulation of copper homeostasis by micro-RNA in Arabidopsis. J Biol Chem. 2007;282(22):16369–78.
Article
CAS
PubMed
Google Scholar
Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P. The cold-inducible CBF1 factor–dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell. 2008;20(8):2117–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chapman EJ, Estelle M. Mechanism of auxin-regulated gene expression in plants. Annu Rev Genet. 2009;43:265–85.
Article
CAS
PubMed
Google Scholar
Beveridge CA, Dun EA, Rameau C. Pea has its tendrils in branching discoveries spanning a century from auxin to strigolactones. Plant Physiol. 2009;151(3):985–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Müller D, Leyser O. Auxin, cytokinin and the control of shoot branching. Ann Bot. 2011;107(7):1203–12.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kebrom TH, Spielmeyer W, Finnegan EJ. Grasses provide new insights into regulation of shoot branching. Trends Plant Sci. 2013;18(1):41–8.
Article
CAS
PubMed
Google Scholar
Wang H, Wang H. Phytochrome signaling: time to tighten up the loose ends. Mol Plant. 2015;8(4):540–51.
Article
CAS
PubMed
Google Scholar
Yuan C, Xi L, Kou Y, Zhao Y, Zhao L. Current perspectives on shoot branching regulation. Front Agric Sci Eng. 2015;2(1):38–52.
Article
Google Scholar
Tanaka M, Takei K, Kojima M, Sakakibara H, Mori H. Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. Plant J. 2006;45(6):1028–36.
Article
CAS
PubMed
Google Scholar
Sekhon RS, Hirsch CN, Childs KL, Breitzman MW, Kell P, Duvick S, Spalding EP, Buell CR, de Leon N, Kaeppler SM. Phenotypic and transcriptional analysis of divergently selected maize populations reveals the role of developmental timing in seed size determination. Plant Physiol. 2014;165(2):658.
Article
CAS
PubMed
PubMed Central
Google Scholar
Le BH, Cheng C, Bui AQ, Wagmaister JA, Henry KF, Pelletier J, Kwong L, Belmonte M, Kirkbride R, Horvath S. Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. Proc Natl Acad Sci. 2010;107(18):8063–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Agarwal P, Kapoor S, Tyagi AK. Transcription factors regulating the progression of monocot and dicot seed development. Bioessays. 2011;33(3):189–202.
Article
CAS
PubMed
Google Scholar
Verdier J, Lalanne D, Pelletier S, Torres-Jerez I, Righetti K, Bandyopadhyay K, Leprince O, Chatelain E, Vu BL, Gouzy J. A regulatory network-based approach dissects late maturation processes related to the acquisition of desiccation tolerance and longevity of Medicago truncatula seeds. Plant Physiol. 2013;163(2):757–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li N, Li Y. Signaling pathways of seed size control in plants. Curr Opin Plant Biol. 2016;33:23–32.
Article
PubMed
CAS
Google Scholar
Becker MG, Hsu S-W, Harada JJ, Belmonte MF: Genomic dissection of the seed. Front Plant Sci 2014, 5(464).
Belmonte MF, Kirkbride RC, Stone SL, Pelletier JM, Bui AQ, Yeung EC, Hashimoto M, Fei J, Harada CM, Munoz MD, et al. Comprehensive developmental profiles of gene activity in regions and subregions of the Arabidopsis seed. Proc Natl Acad Sci. 2013;110(5):E435–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sreenivasulu N, Wobus U. Seed-development programs: a systems biology–based comparison between dicots and monocots. Annu Rev Plant Biol. 2013;64(1):189–217.
Article
CAS
PubMed
Google Scholar
Tecza A, Bugner V, Kühl M, Kühl SJ. Pescadillo homologue 1 and Peter Pan function during Xenopus laevis pronephros development. Biol Cell. 2011;103(10):483–98.
Article
PubMed
Google Scholar
Casaretto JA, El-kereamy A, Zeng B, Stiegelmeyer SM, Chen X, Bi Y-M, Rothstein SJ. Expression of OsMYB55 in maize activates stress-responsive genes and enhances heat and drought tolerance. BMC Genomics. 2016;17(1):312.
Article
PubMed
PubMed Central
CAS
Google Scholar
Williams L, Grigg SP, Xie M, Christensen S, Fletcher JC. Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes. Development. 2005;132(16):3657–68.
Article
CAS
PubMed
Google Scholar
Hopper DW, Ghan R, Cramer GR. A rapid dehydration leaf assay reveals stomatal response differences in grapevine genotypes. Horticulture Res. 2014;1:2.
Article
Google Scholar
Zhang S, Jiang H, Peng S, Korpelainen H, Li C. Sex-related differences in morphological, physiological, and ultrastructural responses of Populus cathayana to chilling. J Exp Bot. 2010;62(2):675–86.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lichtenthaler HK: [34] Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Methods in enzymology. vol. 148: Elsevier; 1987: 350–382.
Chen T, Zhang B: Measurements of proline and malondialdehyde content and antioxidant enzyme activities in leaves of drought stressed cotton. Plant & Cell Physiology 2015.
Abràmoff MD, Magalhães PJ, Ram SJ. Image processing with ImageJ. Biophoton Int. 2004;11(7):36–42.
Google Scholar
Ouyang W, Struik PC, Yin X, Yang J. Stomatal conductance, mesophyll conductance, and transpiration efficiency in relation to leaf anatomy in rice and wheat genotypes under drought. J Exp Bot. 2017;68(18):5191–205.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Dingenen J, De Milde L, Vermeersch M, Maleux K, De Rycke RM, De Bruyne M, Storme V, Gonzalez N, Dhondt S, Inzé D: Chloroplasts are central players in sugar-induced leaf growth. Plant Physiol 2016:pp. 01669.02015.
Yuan C, Ahmad S, Cheng T, Wang J, Pan H, Zhao L, Zhang Q. Red to far-red light ratio modulates hormonal and genetic control of axillary bud outgrowth in Chrysanthemum (Dendranthema grandiflorum ‘Jinba’). Int J Mol Sci. 2018;19(6):1590.
Article
PubMed Central
CAS
Google Scholar
Pan X, Welti R, Wang X. Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography–mass spectrometry. Nat Protoc. 2010;5(6):986.
Article
CAS
PubMed
Google Scholar
Zhan J, Thakare D, Ma C, Lloyd A, Nixon NM, Arakaki AM, Burnett WJ, Logan KO, Wang D, Wang X: RNA sequencing of laser-capture microdissected compartments of the maize kernel identifies regulatory modules associated with endosperm cell differentiation. The Plant Cell 2015:tpc. 114.135657.
Maere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics. 2005;21(16):3448–9.
Article
CAS
PubMed
Google Scholar
Zhang B, Horvath S: A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 2005, 4(1).
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC bioinformatics. 2008;9(1):559.
Article
PubMed
PubMed Central
CAS
Google Scholar