Klein M, Papenbrock J. In: Khan NA, Singh S, Umar S, editors. Sulfur assimilation and abiotic stress in plants. Berlin: springer; 2008. p. 149–66.
Chapter
Google Scholar
Roche P, Debellé F, Maillet F, Lerouge P, Faucher C, Truchet G, et al. Molecular basis of symbiotic host specificity in Rhizobium meliloti: nodH and nodPQ genes encode the sulfation of lipo-oligosaccharide signals. Cell. 1991;67:1131–43.
Article
CAS
PubMed
Google Scholar
Coughtrie MWH, Sharp S, Maxwell K, Innes NP. Biology and function of the reversible sulfation pathway catalysed by human sulfotransferases and sulfatases. Chem Biol Interact. 1998;109:3–27.
Article
CAS
PubMed
Google Scholar
Varin L, Marsolais F, Richard M, Rouleau M. Sulfation and sulfotransferases 6: biochemistry and molecular biology of plant sulfotransferases. FASEB J. 1997;11:517–25.
Article
CAS
PubMed
Google Scholar
Schmidt A. Distribution of APS-sulfotransferase activity among higher plants. Plant Sci Lett. 1975;5:407–15.
Article
CAS
Google Scholar
Glendening TM, Poulton JE. Partial purification and characterization of a 3′-phosphoadenosine 5′-phosphosulfate: desulfoglucosinolate sulfotransferase from cress (Lepidium sativum). Plant Physiol. 1990;94:811–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Varin L, DeLuca V, Ibrahim RK, Brisson N. Molecular characterization of two plant flavonol sulfotransferases. Proc Natl Acad Sci. 1992;89:1286–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lacomme C, Roby D. Molecular cloning of a sulfotransferase in Arabidopsis thaliana and regulation during development and in response to infection with pathogenic bacteria. Plant Mol Biol. 1996;30:995–1008.
Article
CAS
PubMed
Google Scholar
Klein M, Papenbrock J. The multi-protein family of Arabidopsis sulphotransferases and their relatives in other plant species. J Exp Bot. 2004;55:1809–20.
Article
CAS
PubMed
Google Scholar
Baek D, Pathange P, Chung JS, Jiang J, Gao L, Oikawa A, et al. A stress-inducible sulphotransferase sulphonates salicylic acid and confers pathogen resistance in Arabidopsis. Plant Cell Environ. 2010;33:1383–92.
CAS
PubMed
Google Scholar
Yamashino T, Kitayama M, Mizuno T. Transcription of ST2A encoding a sulfotransferase family protein that is involved in jasmonic acid metabolism is controlled according to the circadian clock- and PIF4/PIF5-mediated external coincidence mechanism in Arabidopsis thaliana. Biosci Biotechnol Biochem. 2013;77:2454–60.
Article
CAS
PubMed
Google Scholar
Hirschmann F, Krause F, Papenbrock J. The multi-protein family of sulfotransferases in plants: composition, occurrence, substrate specificity, and functions. Front Plant Sci. 2014;5:1–13.
Article
Google Scholar
Hirschmann F, Papenbrock J. The fusion of genomes leads to more options: a comparative investigation on the desulfo-glucosinolate sulfotransferases of Brassica napus and homologous proteins of Arabidopsis thaliana. Plant Physiol Biochem. 2015;91:10–9.
Article
CAS
PubMed
Google Scholar
Wang QH, Hao RJ, Zheng Z, Deng YW, Du XD. Cloning and function of sulfotransferase gene PmCHST1a in Pinctada martensii. J Fish China. 2017;41:669–77.
Google Scholar
Weinshilboum RM, Otterness DM, Aksoy IA, Wood TC, Her C, Raftogianis RB. Sulfation and sulfotransferases 1: Sulfotransferase molecular biology: cDNAs and genes. FASEB J. 1997;11:3–14.
Article
CAS
PubMed
Google Scholar
Gidda SK, Miersch O, Levitin A, Schmidt J, Wasternack C, Varin L. Biochemical and molecular characterization of a hydroxyjasmonate sulfotransferase from Arabidopsis thaliana. J Biol Chem. 2003;278:17895–900.
Article
CAS
PubMed
Google Scholar
Pornsiriwong W, Estavillo GM, Chan KX, Tee EE, Ganguly D, Crisp PA, et al. A chloroplast retrograde signal, 3’phosphoadenosine 5′-phosphate, acts as a secondary messenger in abscisic acid signaling in stomatal closure and germination. ELife. 2017;6:1–34.
Article
Google Scholar
Zhao CC, Wang YY, Chan KX, Marchant DB, Franks PJ, Randall D, et al. Evolution of chloroplast retrograde signaling facilitates green plant adaptation to land. Proc Natl Acad Sci. 2019;116(11):5015–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen RJ, Jiang YY, Dong JL, Zhang X, Xiao HB, Xu ZJ, et al. Genome-wide analysis and environmental response profiling of SOT family genes in rice (Oryza sativa). Genes Genomics. 2012;34:549–60.
Article
CAS
Google Scholar
Chen ZJ, Scheffler BE, Dennis E, Triplett BA, Zhang TZ, Guo WZ, et al. Toward sequencing cotton (Gossypium) genomes. Plant Physiol. 2007;145:1303–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fang L, Wang Q, Hu Y, Jia YH, Chen JD, Liu BL, et al. Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nat Genet. 2017;49(7):1089–98.
Article
CAS
PubMed
Google Scholar
Yuan YC, Zhang HJ, Wang LY, Xing HX, Mao LL, Tao JC, et al. Candidate quantitative trait loci and genes for fiber quality in Gossypium hirsutum L. detected using single- and multi-locus association mapping. Ind. Crops Prod. 2019;134:356–69.
Article
CAS
Google Scholar
Kim HJ. Triplett B a. cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol. 2001;127:1361–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Wang HY, Zhao PM, Han LB, Jiao GL, Zheng YY, et al. Overexpression of a profilin (GhPFN2) promotes the progression of developmental phases in cotton fibers. Plant Cell Physiol. 2010;51:1276–90.
Article
CAS
PubMed
Google Scholar
Lee JJ, Woodward AW, Chen ZJ. Gene expression changes and early events in cotton fibre development. Ann Bot. 2007;100:1391–401.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tan JF, Tu LL, Deng FL, Hu HY, Nie YC, Zhang XL. A genetic and metabolic analysis revealed that cotton fiber cell development was retarded by flavonoid naringenin. Plant Physiol. 2013;162:86–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu HF, Luo C, Song W, Shen HT, Li GL, He ZG, et al. Flavonoid biosynthesis controls fiber color in naturally colored cotton. Peer J. 2018;6:e4537.
Article
PubMed
CAS
PubMed Central
Google Scholar
Chen ZJ, Guan XY. Auxin boost for cotton. Nat Biotechnol. 2011;29:407–9.
Article
CAS
PubMed
Google Scholar
Xiao GH, Zhao P, Zhang Y. A pivotal role of hormones in regulating cotton fiber development. Front Plant Sci. 2019;10.
Tan JF, Tu LL, Deng FL, Wu R, Zhang XL. Exogenous jasmonic acid inhibits cotton fiber elongation. J Plant Growth Regul. 2012;31:599–605.
Article
CAS
Google Scholar
Hao J, Tu LL, Hu HY, Tan JF, Deng FL, Tang WX, et al. GbTCP, a cotton TCP transcription factor, confers fibre elongation and root hair development by a complex regulating system. J Exp Bot. 2012;63:6267–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li C, He X, Luo XY, Xu L, Liu LL, Min L, et al. Cotton WRKY1 mediates the plant defense-to-development transition during infection of cotton by Verticillium dahliae by activating JASMONATE ZIM-DOMAIN1 expression. Plant Physiol. 2014;166:2179–94.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hu HY, He X, Tu LL, Zhu LF, Zhu ST, Ge ZH, et al. GhJAZ2 negatively regulates cotton fiber initiation by interacting with the R2R3-MYB transcription factor GhMYB25-like. Plant J. 2016;88:921–35.
Article
CAS
PubMed
Google Scholar
Wang W, Cheng YY, Chen DD, Liu D, Hu MJ, Dong J, et al. The catalase gene family in cotton: genome-wide characterization and bioinformatics analysis. Cells. 2019;8:86.
Article
CAS
PubMed Central
Google Scholar
Chen Q, Chen QJ, Sun GQ, Zheng K, Yao ZP, Han YH, et al. Genome-wide identification of cyclophilin gene family in cotton and expression analysis of the fibre development in Gossypium barbadense. Int J Mol Sci. 2019;20:349.
Article
PubMed Central
CAS
Google Scholar
Wendel JF, Clark CR. Polyploidy and the evolutionary history of cotton. Adv Agron. 2003;78:139.
Article
Google Scholar
Ma ZY, He SP, Wang XF, Sun JL, Zhang Y, Zhang GY, et al. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat Genet. 2018;50:803–13.
Article
CAS
PubMed
Google Scholar
Wagner GJ, Wang E, Shepherd RW. New approaches for studying and exploiting an old protuberance, the plant trichome. Ann Bot. 2004;93:3–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guan XY, Song QX, Chen ZJ. Polyploidy and small RNA regulation of cotton fiber development. Trends Plant Sci. 2014;19:516–28.
Article
CAS
PubMed
Google Scholar
Zhang X, Hu DP, Li Y, Chen Y, Abidallha EHMA, Dong ZD, et al. Developmental and hormonal regulation of fiber quality in two natural-colored cotton cultivars. J Integr Agric. 2017;16:1720–9.
Article
CAS
Google Scholar
Du XM, Huang G, He SP, Yang ZE, Sun GF, Ma XF, et al. Resequencing of 243 diploid cotton accessions based on an updated a genome identifies the genetic basis of key agronomic traits. Nat Genet. 2018;50:796–802.
Article
CAS
PubMed
Google Scholar
Wang KB, Wang ZW, Li FG, Ye WW, Wang JY, Song GL, et al. The draft genome of a diploid cotton Gossypium raimondii. Nat Genet. 2012;44:1098–103.
Article
CAS
PubMed
Google Scholar
Wang MJ, Tu LL, Yuan DJ, Zhu D, Shen C, Li JY, et al. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet. 2019;51:224–9.
Article
CAS
PubMed
Google Scholar
Hu Y, Chen JD, Fang L, Zhang ZY, Ma W, Niu YC, et al. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat Genet. 2019;51:739–48.
Article
CAS
PubMed
Google Scholar
Lynch M, Conery JS. The evolutionary fate and consequences of duplicate genes. Science. 2000;290:1151–6.
Article
CAS
PubMed
Google Scholar
Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J, Jin DC, et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature. 2012;492:423–7.
Article
CAS
PubMed
Google Scholar
Zhu T, Liang CZ, Meng ZG, Sun GQ, Meng ZH, Guo SD, et al. CottonFGD: an integrated functional genomics database for cotton. BMC Plant Biol. 2017;17:101.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen CJ, Chen H, He YH, Xia R. TBtools, a Toolkit for Biologists integrating various biological data handling tools with a user-friendly interface. bioRxiv. 2018:289660.
Li HZ. A model of local-minima distribution on conformational space and its application to protein structure prediction. Proteins. 2006;64(4):985–91.
Article
CAS
PubMed
Google Scholar
Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, et al. Protein identification and analysis tools on the ExPASy server. In: The proteomics protocols handbook. In; 2009. p. 571–607.
Hu B, Jin JP, Guo AY, Zhang H, Luo JC, Gao G. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics. 2015;31:1296–7.
Article
PubMed
Google Scholar
Bailey TL, Elkan C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol. 1994;2:28–36.
CAS
PubMed
Google Scholar
Zhang TZ, Hu Y, Jiang WK, Fang L, Guan XY, Chen JD, et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol. 2015;33:531–7.
Article
CAS
PubMed
Google Scholar
Clough SJ, Bent FA. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16:735–43.
Article
CAS
PubMed
Google Scholar
Liu TL, Song TQ, Zhang X, Yuan HB, Su LM, Li WL, et al. Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis. Nat Commun. 2014;5:4686.
Article
CAS
PubMed
Google Scholar
Sparkes IA, Runions J, Kearns A, Hawes C. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Protoc. 2006;1(4):2019–25.
Article
CAS
PubMed
Google Scholar
Zhang W, Wang SY, Yu FW, Tang J, Shan X, Bao K, et al. Genome-wide characterization and expression profiling of SWEET genes in cabbage (Brassica oleracea var. capitata L.) reveal their roles in chilling and clubroot disease responses. BMC Genomics. 2019;20:93.
Article
PubMed
PubMed Central
Google Scholar
Gao XQ, Britt RC Jr, Shan LB, He P. Agrobacterium-mediated virus-induced gene silencing assay in cotton. J Vis Exp. 2011:e2938.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔC
T method. Methods. 2001;25(4):402–8.
Article
CAS
PubMed
Google Scholar