Bedigian D, Harlan J. Evidence for cultivation on sesame in the ancient world. Econ Bot. 1986;40:137–54.
Article
Google Scholar
Zhang H, Miao H, Wang L, Qu L, Liu H, Wang Q, Yue M. Genome sequencing of the important oilseed crop Sesamum indicum L. Genome Biol. 2013;14:401.
Article
PubMed
PubMed Central
CAS
Google Scholar
Erbas M, Sekerci H, Gul S, Furat S, Yol E, Uzon B. Changes in total antioxidant capacity of sesame (Sesamum indicum L.) by variety. Asian J Chem. 2009;21:5549–55.
CAS
Google Scholar
Uzun B, Arslan C, Furat S. Variation in fatty acid compositions, oil content and oil yield in a germplasm collection of sesame (Sesamum indicum L.). J Am Oil Chem Soc. 2008;85:1135–42.
Article
CAS
Google Scholar
Gill BS, Appels R, Botha-Oberholster AM, Buell CR, Bennetzen JL, Chalhoub B, Chumley F, Dvorak J, Iwanaga M, Keller B, Li W, McCombie WR, Ogihara Y, Quetier F, Sasaki T. A workshop report on wheat genome sequencing: international genome research on wheat consortium. Genetics. 2004;168:1087–96.
Article
PubMed
PubMed Central
Google Scholar
Lai Y, Li W, Wang Q, Li X, Qi N, Lin H. Innovation and utilization of new high isoflavone resource of wild soybean in Heilongjiang Province I analysis of isoflavone content and relevant of characters. Soybean Sci. 2006;25:414–6.
Google Scholar
Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, Shao D, Xu C, Li X, Xiao J, He Y, Zhang Q. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet. 2011;43:1266–9.
Article
CAS
PubMed
Google Scholar
Wilson DO. Storage of orthodox seeds. In: Basra AS, editor. Seed quality: basic mechanisms, agricultural implications. New York: Food Products; 1995. p. 173–208.
Google Scholar
Li M, Xu L, Ren J, Cao G, Yu L, He H, Han L, Koh HJ. Identification of quantitative trait loci for grain traits in japonica rice. Agr Sci China. 2010;9:929–36.
Article
Google Scholar
Xing Y, Zhang Q. Genetic and molecular bases of rice yield. Annu Rev Plant Biol. 2010;61:421–42.
Article
CAS
PubMed
Google Scholar
Zhang G, Zhang G, Qian Q, Xu L, Zeng D, Teng S, Bao J. QTL analysis of grain shape traits in different environments. Chin J Rice Sci. 2004;18:16–22.
Google Scholar
Huang R, Jiang L, Zheng J, Wang T, Wang H, Huang Y, Hong Z. Genetic bases of rice grain shape: so many genes, so little known. Trends Plant Sci. 2013;18:218–26.
Article
CAS
PubMed
Google Scholar
Martin A, Lee J, Kichey T, Gerentes D, Zivy M, Tatout C, Dubois F, Balliau T, Valot B, Davanture M. Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. Plant Cell. 2006;18:3252–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frary A, Nesbitt TC, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science. 2000;289:85–8.
Article
CAS
PubMed
Google Scholar
Liu J, Eck JV, Cong B, Tanksley SD. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci U S A. 2002;99:13302–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Mei H, Du Z, Wu K, Zheng Y, Cui X, Zheng L. Construction of core collection of sesame based on phenotype and molecular markers. Sci Agr Sin. 2017;50:2433–41.
Google Scholar
Wei X, Liu K, Zhang Y, Feng Q, Wang L, Zhao Y, Li D, Zhao Q, Zhu X, Zhu X, Li W, Fan D, Gao Y, Lu Y, Zhang X, Tang X, Zhou C, Zhu C, Liu L, Zhong R, Tian Q, Wen Z, Weng Q, Han B, Huang X, Zhang X. Genetic discovery for oil production and quality in sesame. Nat Commun. 2015;6:8609.
Article
CAS
PubMed
Google Scholar
El-Bramawy MAES, El-Hendawy SES, Amin Shaban WI. Assessing the suitability of morphological and phenological traits to screen sesame genotypes for Fusarium wilt and charcoal rot disease resistance. J Plant Protect Res. 2008;48:397–410.
Google Scholar
Kanu PJ. Biochemical analysis of black and white sesame seeds from China. Am J Biochem Mol Biol. 2011;1:145–57.
Article
Google Scholar
Nakimi M. The chemistry and physiological functions of sesame. Food Rev Int. 1995;11:281–329.
Article
Google Scholar
Shahidi F, Liyana-Pathirana CM, Wall DS. Antioxidant activity of white and black sesame seeds and their hull fractions. Food Chem. 2006;99:478–83.
Article
CAS
Google Scholar
Zhang H, Miao H, Li C, Wei L, Ma Q. Analysis of sesame karyotype and resemblance-near coefficient. Chin Bull Bot. 2012;47:602–14.
CAS
Google Scholar
Zhang H, Miao H, Wei L, Li C, Zhao R, Wang C. Genetic analysis and QTL mapping of seed coat color in sesame (Sesamum indicum L.). PloS one. 2013;8:e63898.
Article
PubMed
PubMed Central
Google Scholar
Wang L, Xia Q, Zhang Y, Zhu X, Zhu X, Li D, Ni X, Gao Y, Xiang H, Wei X, Yu J, Quan Z, Zhang X. Updated sesame genome assembly and fine mapping of plant height and seed coat color QTLs using a new high-density genetic map. BMC Genomics. 2016;17:31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ganal MW, Durstewitz G, Polley A, Berard A, Buckler ES, Charcosset A, Clarke JD, Graner EM, Hansen M, Joets J, Le-Paslier MC, McMullen MD, Montalent P, Rose M, Schon CC, Sun Q, Walter H, Martin OC, Falque M. A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PloS one. 2011;6:e28334.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sim SC, Durstewitz G, Plieske J, Wieseke R, Ganal MW, Deynze AV, Hamilton JP, Buell CR, Causse M, Wijeratne S, Francis DM. Development of a large SNP genotyping array and generation of high-density genetic maps in tomato. PLoS One. 2012;7:e40563.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang S, Chen J, Zhang W, Hu Y, Chang L, Fang L, Wang Q, Lv F, Wu H, Si Z, Chen S, Cai C, Zhu X, Zhou B, Guo W, Zhang T. Sequence-based ultra-dense genetic and physical maps reveal structural variations of allopolyploid cotton genomes. Genome Biol. 2015;16:108.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhao X, Han Y, Li Y, Liu D, Sun M, Zhao Y, Lv C, Li D, Yang Z, Huang L, Teng W, Qiu L, Zheng H, Li W. Loci and candidate gene identification for resistance to Sclerotinia sclerotiorum in soybean (Glycine max L. Merr.) via association and linkage maps. Plant J. 2015;82:245–55.
Article
CAS
PubMed
Google Scholar
Mei H, Liu Y, Du Z, Wu K, Cui C, Jiang X, Zhang H, Zheng Y. High-density genetic map construction and gene mapping of basal branching habit and flowers per leaf axil in sesame. Front Plant Sci. 2017;8:636.
Article
PubMed
PubMed Central
Google Scholar
Miao H. The genome of Sesamum indicum L. In Plant and Animal Genome XXII conference. Plant and Animal Genome. 2016.
Wu K, Liu H, Yang M, Tao Y, Ma H, Wu W, Zuo Y, Zhao Y. High-density genetic map construction and QTLs analysis of grain yield-related traits in Sesame (Sesamum indicum L.) based on RAD-Seq techonology. BMC Plant Biol. 2014;14:274.
Article
PubMed
PubMed Central
Google Scholar
Zhang H, Miao H, Li C, Wei L, Duan Y, Ma Q, Kong J, Xu F, Chang S. Ultra-dense SNP genetic map construction and identification of SiDt gene controlling the determinate growth habit in Sesamum indicum L. Sci Rep. 2016;6:31556.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Wang L, Xin H, Li D, Ma C, Ding X, Hong W, Zhang X. Contruction of a high-density genetic map for sesame based on large scale marker development by specific length amplified fragment (SLAF) sequencing. BMC Plant Biol. 2013;13:141.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang H, Miao H, Wei L, Li C, Duan Y, Xu F, Qu W, Zhao R, Ju M, Chang S. Identification of a SiCL1 gene controlling leaf curling and capsule indehiscence in sesame via cross-population association mapping and genomic variants screening. BMC Plant Biol. 2018;18:296.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang E, Wang J, Zhu X, Hao W, Wang L, Li Q, Zhang L, He W, Lu B, Lin H, Ma H, Zhang G, He Z. Control of rice grain-filing and yield by a gene with a potential signature of domestication. Nat Genet. 2008;40:1370–4.
Article
CAS
PubMed
Google Scholar
Saeidi G, Rowland G. The inheritance of variegated seed color and palmitic acid in flax. J Hered. 1997;88:466–8.
Article
Google Scholar
Mckay J. Factor interaction in Citrullus. J Hered. 1936;27:110–2.
Article
Google Scholar
Durst CE. Inheritance in lettuce. Bull Ill Agric Exp Stn. 1930;356:239–341.
Google Scholar
Vandenberg A, Slinkard A. Genetics of seed coat color and pattern in lentil. J Hered. 1990;81:484–8.
Article
Google Scholar
Swenson S. Inheritance of seed color in biennial white sweetclover, Melilotus alba. J Am Soc Agron. 1942;34:452–9.
Article
Google Scholar
McCallum J, Timmerman-Vaughan G, Frew T, Russell A. Biochemical and genetic linkage analysis of green seed color in field pea. J Am Soc Hortic Sci. 1997;122:218–25.
Article
CAS
Google Scholar
Zewdie Y, Bosland P. Inheritance of seed color in Capsicum. J Hered. 2003;94:355–7.
Article
CAS
PubMed
Google Scholar
Monforte A, Oliver M, Gonzalo M, Alvarez J, Dolcet-Sanjuan R, Arus P. Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theor Appl Genet. 2004;108:750–8.
Article
CAS
PubMed
Google Scholar
Njiti V, Meksem K, Iqbal M, Johnson J, Kassem MA, Zobrist KF, Kilo VY, Lightfoot DA. Common loci underlie field resistance to soybean sudden death syndrome in Forrest, pyramid, Essex, and Douglas. Theor Appl Genet. 2002;104:294–300.
Article
CAS
PubMed
Google Scholar
Sakata Y, Kubo N, Morishita M, Kitadani E, Sugiyama M, Hirai M. QTL analysis of powdery mildew resistance in cucumber (Cucumis sativus L.). Theor Appl Genet. 2006;112:243–50.
Article
CAS
PubMed
Google Scholar
Verma P, Goyal R, Chahota RK, Sharma TR, Abdin MZ, Bhatia S. Construction of a genetic linkage map and identification of QTLs for seed weight and seed size traits in Lentil (Lens culinaris Medik.). PloS one. 2015;10:e0139666.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wu K, Yang M, Liu H, Tao Y, Mei J, Zhao Y. Genetic analysis and molecular characterization of Chinese sesame (Sesamum indicum L.) cultivars using insertion-deletion (InDel) and simple sequence repeat (SSR) markers. BMC Genet. 2014;15:35.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yue W, Wei L, Zhang T, Li C, Miao H, Zhang H. Analysis of genetic diversity and population structure of germplasm resources in sesame (Sesamum indicum L.) by SSR markers. Acta Agron Sin. 2012;38:2286–96.
Article
CAS
Google Scholar
Zhang H, Wei L, Miao H, Zhang T, Wang C. Development and validation of genic-SSR markers in sesame by RNA-seq. BMC Genomics. 2012;13:316.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Zhang X, Che Z, Wang L, Wei W, Li D. Genetic diversity assessment of sesame core collection in China by phenotype and molecular markers and extraction of a mini-core collection. BMC Genet. 2012;13:102.
Article
PubMed
PubMed Central
Google Scholar
Wei L, Zhang H, Zheng Y, Miao H, Zhang T, Guo W. A genetic linkage map construction for sesame (Sesamum indicum L.). Genes Genom. 2009;31:199–208.
Article
CAS
Google Scholar
Liu J, Huang S, Sun M, Liu S, Liu Y, Wang W, Zhang X, Wang H, Hua W. An improved allele-specific PCR primer design method for SNP marker analysis and its application. Plant Methods. 2012;8:34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brookes AJ. The essence of SNPs. Gene. 1999;234:177–86.
Article
CAS
PubMed
Google Scholar
Xu S. Quantitative trait locus mapping can benefit from segregation distortion. Genetics. 2008;180:2201–8.
Article
PubMed
PubMed Central
Google Scholar
Xu S, Hu Z. Mappinag quntitative trait loci using distorted markers. Int J Plant Genomics. 2009;2009:410825.
PubMed
Google Scholar
Zhang L, Wang S, Li H, Deng Q, Zheng A, Li S, Li P, Li Z, Wang J. Effects of missing marker and segregation distortion on QTL mapping in F2 populations. Theor Appl Genet. 2010;121:1071–82.
Article
PubMed
Google Scholar
Wang C, Zhu C, Zhai H, Wan J. Mapping segregation distortion loci and quantitative trait loci for spikelet sterility in rice (Oryza sativa L.). Genet Res. 2005;86:97–106.
Article
CAS
PubMed
Google Scholar
He X, Xu C, Kuai J, Gu S, Li T. Principal factors affecting the power of detection and accuracy of QTL mapping. Acta Agron Sin. 2001;27:469–75.
Google Scholar
Chang L, Yen W, Huang S, Duh PD. Antioxidant activity of sesame coat. Food Chem. 2002;78:347–54.
Article
CAS
Google Scholar
Gothandam KM, Kim ES, Cho H, Chung YY. OsPPR1, a pentatricopeptide repeat protein of rice is essential for the chloroplast biogenesis. Plant Mol Biol. 2005;58:421.
Article
CAS
PubMed
Google Scholar
Nakamura N. The role of the transmembrance RING finger proteins in cellular and organelle function. Membranes. 2011;1:354–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu CY. Molecular mechanism of manipulating seed coat coloration in oilseed Brassica species. J Appl Genet. 2013;54:135–45.
Article
PubMed
Google Scholar
Mayer AM. Polyphenol oxidases in plants and fungi: going places? A review. Phytochemistry. 2006;67:2318–31.
Article
CAS
PubMed
Google Scholar
Yu Y, Tang T, Qian Q, Wang Y, Yan M, Zeng D, Han B, Wu C, Shi S, Li J. Independent losses of function in a polyphenol oxidase in rice: differentiation in grain discoloration between subspecies and the role of positive selection under domestication. Plant Cell. 2008;20:2946–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saito K, Yonekura-Sakakibara K, Nakabayashi R, Higashi Y, Yamazaki M, Tohge T, Fernie AR. The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity. Plant Physiol Biochem. 2013;72:21–34.
Article
CAS
PubMed
Google Scholar
Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J Exp Bot. 2011;62:2465–83.
Article
CAS
PubMed
Google Scholar
Yang K, Jeong N, Moon JK, Lee YH, Lee SH, Kim HM, Hwang CH, Back K, Palmer RG, Jeong SC. Genetic analysis of genes controlling natural variation of seed coat and flower colors in soybean. J Hered. 2010;101:757–68.
Article
CAS
PubMed
Google Scholar
Small ID, Peeters N. The PPR motif-a TPR-related motif prevalent in plant organellar proteins. Trends Biochem Sci. 2000;25:46–7.
Article
CAS
PubMed
Google Scholar
Stern DB, Hanson MR, Barkan A. Genetics and genomics of chloroplast biogenesis: maize as a model system. Trends Plant Sci. 2004;9:293–301.
Article
CAS
PubMed
Google Scholar
Bentolila S, Alfonso AA, Hanson MR. A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants. Proc Natl Acad Sci. 2002;99:10887–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kazama T, Toriyama K. A pentatricopeptide repeat-containing gene that promotes the processing of aberrant atp6 RNA of cytoplasmic male-sterile rice. FEBS Lett. 2003;544:99–102.
Article
CAS
PubMed
Google Scholar
Fisk DG, Walker MB, Barkan A. Molecular cloning of the maize gene crp1 reveals similarity between regulators of mitochondrial and chloroplast gene expression. EMBO J. 1999;18:2621–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakamura T, Meierhoff K, Westhoff P, Schuster G. RNA-binding properties of HCF152, an Arabidopsis PPR protein involved in the processing of chloroplast RNA. Eur J Biochem. 2003;270:4070–81.
Article
CAS
PubMed
Google Scholar
Nakamura T, Schuster G, Sugiura M, Sugita M. Chloroplast RNA-binding and pentatricopeptide repeat proteins. Biochem Soc Trans. 2004;32:571–4.
Article
CAS
PubMed
Google Scholar
Williams PM, Barkan A. A chloroplast-localized PPR protein required for plastid ribosome accumulation. Plant J. 2003;36:675–86.
Article
CAS
PubMed
Google Scholar
Oguchi T, Sage-Ono K, Kamada H, Ono M. Genomic structure of a novel Arabidopsis clock-controlled gene AtC401, which encodes a pentatricopeptide repeat protein. Gene. 2004;330:29–37.
Article
CAS
PubMed
Google Scholar
Zhou Y, Huang H, Li J, Luo S, Wu T, Zhong Y. Development and application of SNP molecular marker linked to pericarp color in Cucurbita moschata Duch. J Nuc Agr Sci. 2018;32:1050–9.
Google Scholar
Cao Y, Tang X, Liu Y. Cloning, expression pattern and bioinformation analyses of COBRA gene in tomato (Solanum lycopersicum). Bull Bota Res. 2012;32:304–10.
CAS
Google Scholar
Jin J, Fu J. Physiological action of plant fat oxygenase. J Biol. 1993;5:14–6.
Google Scholar
Li Y, Fu M, Jiang L. Research progress on plant AMT. Guangdong Agric Sci. 2012;19:142–5.
Google Scholar
Brash AR. Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem. 1999;274:23679–91.
Article
CAS
PubMed
Google Scholar
Ha TJ, Kubo I. Slow-binding inhibition of soybean lipoxygenase-1 by dodecylgallate. J Agr Food Chem. 2007;55:446–51.
Article
CAS
Google Scholar
Pershern AS, Breene WM, Lula EC. Analysis of factors influencing lipid oxidation in hazelnuts (Corylus spp.). J Food Process Pres. 1995;19:9–26.
Article
CAS
Google Scholar
Robinson DS, Wu ZC, Domoney C. Lipoxygenases and the quality of foods. Food Chem. 1995;54:33–43.
Article
CAS
Google Scholar
Bohn RM, Haas LW. Chemistry and methods of enzymes. NewYork: Academic; 1928.
Google Scholar
Sumner JB, Sumner RJ. The coupled oxidation of carotene and fat by carotene oxidase. J Biol Chem. 1940;134:531–3.
CAS
Google Scholar
Kikuchi A, Kitamura K. Simple and rapid carotene bleaching tests for the detection of lipoxygenase isozymes in soybean seeds. Japanese J Breeding. 1987;37:10–6.
Article
CAS
Google Scholar
Ben-Tov D, Abraham Y, Stav S, Thompson K, Loraine A, Elbaum R, Souza AD, Pauly M, Kieber JJ, Harpaz-Saad S. COBRA-LIKE2, a member of the glycosylphosphatidylinositol-anchored COBRA-LIKE family, plays a role in cellulose deposition in Arabidopsis seed coat mucilage secretory cells. Plant Physiol. 2015;167:711–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brown DM, Zeef LA, Ellis J, Goodacre R, Turner SR. Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell. 2005;17:2281–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li S, Ge F, Xu M, Zhao X, Huang G, Zhou L, Wang J, Kombrink A, McCormick S, Zhang X, Zhang Y. Arabidopsis COBRA-LIKE 10, a GPI-anchored protein, mediates directional growth of pollen tubes. Plant J. 2013;74:486–97.
Article
CAS
PubMed
Google Scholar
Ye X, Kang B, Osburn LD, Cheng Z. The COBRA gene family in Populus and gene expression in vegetative organs and in response to hormones and environmental stresses. Plant Growth Regul. 2009;58:211–23.
Article
CAS
Google Scholar
Luo Y, Li W, Dai L. The progress of the cross-talk among the signaling pathways of phytohormones in plant defense responses. Chin Agric Sci Bull. 2013;29:153–7.
Google Scholar
Cai C, Lu J, Chen K. A review of study in protein kinase. Subtropical Plant Sci. 2002;31:63–7.
Google Scholar
Jin C, Hou M, Pan Y. Research progress of ribosomal protein function in Arabidopsis thaliana. Plant Physiol. 2018;54:203–12.
Google Scholar
Huang W, Yu M, Jiao Y, Ma J, Ma M, Wang Z, Wu H, Tan D. Mitochondrial transcription termination factor 2 binds to entire mitochondrial DNA and negatively regulates mitochondrial gene expression. Acta Biochim Biophys Sin. 2011;43:472–9.
Article
CAS
PubMed
Google Scholar
Xiong W, Luo Y, Zhang C, Tan D, Zuo S. Expression, purification of recombinant human mitochondrial transcription termination factor 3 (hMTERF3) and preparation of polyclonal antibody against hMTERF3. Appl Biochem Biotech. 2012;167:2318–29.
Article
CAS
Google Scholar
Guan Q, Wu J, Zhang Y, Jiang C, Liu R, Chai C, Zhu J. A DEAD box RNA helicase is critical for pre-mRNA splicing, cold-responsive gene regulation, and cold tolerance in Arabidopsis. Plant Cell. 2013;25:342–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tuteja N. Plant DNA helicases: the long unwinding road. J Exp Bot. 2003;54:2201–14.
Article
CAS
PubMed
Google Scholar
Ulmasov T, Hagen G, Guilfoyle TJ. Activation and repression of transcription by auxin response factors. Proc Natl Acad Sci U S A. 1999;96:5844–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ulmasov T, Hagen G, Guilfoyle TJ. Dimerization and DNA binding of auxin response factors. Plant J. 1999;19:309–19.
Article
CAS
PubMed
Google Scholar
Zhou H, Li R, Chen D, Sun R, Zhao W. Research on transcription factor family of mulberry Trihelix. Genom Appl Biol. 2018;37:874–80.
CAS
Google Scholar
Luo J, Tang S, Mei F, Peng X, Li J, Li X, Yan X, Zeng X, Liu F, Wu Y, Wu G. BnSIP1-1, a Trihelix family gene, mediates abiotic stress tolerance and ABA signaling in Brassica napus. Front Plant Sci. 2017;8:44.
PubMed
PubMed Central
Google Scholar
Xi J, Qiu Y, Du L, Poovaiah BW. Plant-specific Trihelix transcription factor AtGT2L interacts with calcium/calmodulin and responds to cold and salt stresses. Plant Sci. 2012;185:274–80.
Article
PubMed
CAS
Google Scholar
Gourrierec JL, Li Y, Zhou D. Transcriptional activation by Arabidopsis GT-1 may be through interaction with TFIIA-TBP-TATA complex. Plant J. 1999;18:663–8.
Article
PubMed
Google Scholar
Perisic O, Lam E. A tobacco DNA binding protein that interacts with a light-responsive box II element. Plant Cell. 1992;4:831–8.
CAS
PubMed
PubMed Central
Google Scholar
Kay SA, Keith B, Shinozaki KZ, Chye ML, Chua NH. The rice phytochrome gene: structure, autoregulated expression, and binding of GT-1 to a conserved site in the 5′ upstream region. Plant Cell. 1989;1:351–60.
CAS
PubMed
PubMed Central
Google Scholar
Song X, Huang W, Shi M, Zhu M, Lin H. A QTL for rice grain width and weight encodes a previously unknowm RING-type E3 ubiquitin ligase. Nat Genet. 2007;39:623–30.
Article
CAS
PubMed
Google Scholar
Weng J, Gu S, Wan X, Gao H, Guo T, Su N, Lei C, Zhang X, Cheng Z, Guo X, Wang J, Jiang L, Zhai H, Wan J. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res. 2008;18:1199–209.
Article
CAS
PubMed
Google Scholar
Qi P, Lin Y, Song X, Shen J, Huang W, Shan J, Zhu M, Jiang L, Gao J, Lin H. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3. Cell Res. 2012;22:1666–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ranocha P, Dima O, Nagy R, Felten J, Faillie CC, Novak O, Morreel K, Lacombe B, Martinez Y, Pfrunder S, Jin X, Renou JP, Thibaud JB, Ljung K, Fischer U, Martinoia E, Boerjan W, Goffner D. Arabidopsis WAT1 is a vacuolar auxin transport facilitator required for auxin homoeostasis. Nat Commun. 2013;4:2625.
Article
PubMed
CAS
Google Scholar
Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull. 1987;19:11–5.
Google Scholar
Sun X, Liu D, Zhang X, Li W, Liu H, Hong W, Jiang C, Guan N, Ma C, Zeng H, Xu C, Song J, Huang L, Wang C, Shi J, Wang R, Zheng X, Lu C, Wang X, Zheng H. SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS One. 2013;8:e58700.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics. 2008;4:713–4.
Article
CAS
Google Scholar
Zhang J, Zhang Q, Cheng T, Yang W, Pan H, Zhong J, Huang L, Liu E. High-density genetic map construction and identification of a locus controlling weeping trait in an ornamental woody plant (Prunus mume Sieb. Et Zucc). DNA Res. 2015;22:183–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu D, Ma C, Hong W, Huang L, Liu M, Liu H, Zeng H, Deng D, Xin H, Song J, Xu C, Sun X, Hou X, Wang X, Zheng H. Construction and analysis of high-density linkage map using high-throughput sequencing data. PLoS One. 2014;9:e98855.
Article
PubMed
PubMed Central
CAS
Google Scholar
Van Ooijen J. Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genet Res. 2011;93:343–9.
Article
Google Scholar
Van Os H, Stam P, Visser RG, Van Eck HJ. SMOOTH: a statistical method for successful removal of genotyping errors from high-density genetic linkage data. Theor Appl Genet. 2005;112:187–94.
Article
CAS
PubMed
Google Scholar
Kosambi D. The estimation of map distances from recombination values. Ann Eugenics. 1944;12:172–5.
Article
Google Scholar
Paillard S, Schnurbusch T, Winzeler M, Messmer M, Sourdille P, Abderhalden O, Keller B, Schachermayr G. An integrative genetic linkage map of winter wheat (Triticum aestivum L.). Theor Appl Genet. 2003;107:1235–42.
Article
CAS
PubMed
Google Scholar
Wang W, Huang S, Liu Y, Fang Z, Yang L, Hua W, Yuan S, Liu S, Sun J, Zhuang M, Zhang Y, Zeng A. Construction and analysis of a high-density genetic linkage map in cabbage (Brassica oleracea L. var. capitata). BMC Genomics. 2012;13:523.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stuber CW, Lincoln SE, Wolff DW, Helentjaris T, Lander ES. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics. 1992;132:823–39.
CAS
PubMed
PubMed Central
Google Scholar
Zhang Z, Shang H, Shi Y, Huang L, Li J, Ge Q, Gong J, Liu A, Chen T, Wang D, Wang Y, Palanga KK, Muhammad J, Li W, Lu Q, Deng X, Tan Y, Song W, Cai J, Li P, Rashid H, Gong W, Yuan Y. Construction of a high-density genetic map by specific locus amplified fragment sequencing (SLAF-seq) and its application to Quantitative Trait Loci (QTL) analysis for boll weight in upland cotton (Gossypium hirsutum.). BMC Plant Biol. 2016;16:79.
Article
PubMed
PubMed Central
CAS
Google Scholar