Schiavon M, Pilon-Smits EAH. Selenium biofortification and phytoremediation Phytotechnologies: a review. J Environ Qual. 2017;46:10. https://doi.org/10.2134/jeq2016.09.0342.
Article
CAS
PubMed
Google Scholar
Mansour ATE, Goda AA, Omar EA, Khalil HS, Esteban MÁ. Dietary supplementation of organic selenium improves growth, survival, antioxidant and immune status of meagre, Argyrosomus regius, juveniles. Fish Shellfish Immunol. 2017;68:516–24. https://doi.org/10.1016/j.fsi.2017.07.060.
Article
CAS
PubMed
Google Scholar
Zeng R, Liang Y, Farooq MU, Zhang Y, Ei HH, Tang Z, et al. Alterations in transcriptome and antioxidant activity of naturally aged mice exposed to selenium-rich rice. Environ Sci Pollut Res. 2019;26:834–44.
Google Scholar
Ošťádalová I, Charvátová Z, Wilhelm J. Lipofuscin-like pigments in the rat heart during early postnatal development: effect of selenium supplementation. Physiol Res. 2010;59:881–6.
PubMed
Google Scholar
Pachuau L, Dutta RS, Roy PK, Kalita P, Lalhlenmawia H. Physicochemical and disintegrant properties of glutinous rice starch of Mizoram. India Int J Biol Macromol. 2017;95:1298–304. https://doi.org/10.1016/j.ijbiomac.2016.11.029.
Article
CAS
PubMed
Google Scholar
Zhu YG, Pilon-Smits EAH, Zhao FJ, Williams PN, Meharg AA. Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends Plant Sci. 2009;14:436–42. https://doi.org/10.1016/j.tplants.2009.06.006.
Article
CAS
PubMed
Google Scholar
Deng X, Liu K, Li M, Zhang W, Zhao X, Zhao Z, et al. Difference of selenium uptake and distribution in the plant and selenium form in the grains of rice with foliar spray of selenite or selenate at different stages. F Crop Res. 2017;211:165–71. https://doi.org/10.1016/j.fcr.2017.06.008.
Article
Google Scholar
Bocchini M, D’Amato R, Ciancaleoni S, Fontanella MC, Palmerini CA, Beone GM, et al. Soil selenium (Se) biofortification changes the physiological, biochemical and epigenetic responses to water stress in Zea mays L. by inducing a higher drought tolerance. Front Plant Sci. 2018;9 March 1–14.
Xu GJ, Zhang MZ, Zheng C, Lei C, Yin LP, Wang SH, et al. Selenium increases chlorogenic acid, chlorophyll and carotenoids of Lycium chinense leaves. J Sci Food Agric. 2012;93:310–5.
PubMed
Google Scholar
Zhang L, Hu B, Deng K, Gao X, Sun G, Zhang Z, et al. NRT1.1B improves selenium concentrations in rice grains by facilitating selenomethinone translocation. Plant Biotechnol J. 2019;17:1058–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brozmanová J, Mániková D, Vlčková V, Chovanec M. Selenium: a double-edged sword for defense and offence in cancer. Arch Toxicol. 2010;84:919–38.
Article
PubMed
Google Scholar
El Mehdawi AF, Jiang Y, Guignardi ZS, Esmat A, Pilon M, Pilon-Smits EAH, et al. Influence of sulfate supply on selenium uptake dynamics and expression of sulfate/selenate transporters in selenium hyperaccumulator and nonhyperaccumulator Brassicaceae. New Phytol. 2018;217:194–205.
Article
PubMed
Google Scholar
Liang Y, Farooq MU, Hu Y, Tang Z, Zhang Y, Zeng R, et al. Study on stability and antioxidant activity of red Anthocyanidin Glucoside rich hybrid Rice, its nutritional and physicochemical characteristics. Food Sci Technol Res. 2018;24:687–96. https://doi.org/10.3136/fstr.24.687.
Article
CAS
Google Scholar
Farooq MU, Tang Z, Zheng T, Asghar MA. Cross-talk between cadmium and selenium at elevated cadmium stress determines the fate of selenium uptake in Rice. Biomolecules. 2019;9.
Article
CAS
PubMed Central
Google Scholar
Ebrahimi N, Hartikainen H, Simojoki A, Hajiboland R, Seppänen M. Dynamics of dry matter and selenium accumulation in oilseed rape (Brassica napus L.) in response to organic and inorganic selenium treatments. Agric Food Sci. 2015;24:104–17.
Article
CAS
Google Scholar
Schiavon M, Pilon-Smits EAH. The fascinating facets of plant selenium accumulation – biochemistry, physiology, evolution and ecology. New Phytol. 2017;213:1582–96.
Article
CAS
PubMed
Google Scholar
Tang W, Dang F, Evans D, Zhong H, Xiao L. Understanding reduced inorganic mercury accumulation in rice following selenium application: selenium application routes, speciation and doses. Chemosphere. 2017;169:369–76. https://doi.org/10.1016/j.chemosphere.2016.11.087.
Article
CAS
PubMed
Google Scholar
Zhao XQ, Mitani N, Yamaji N, Shen RF, Ma JF. Involvement of silicon influx transporter OsNIP2;1 in selenite uptake in Rice. Plant Physiol. 2010;153:1871–7. https://doi.org/10.1104/pp.110.157867.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang L, Hu B, Li W, Che R, Deng K, Li H, et al. OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice. New Phytol. 2014;201:1183–91.
Article
CAS
PubMed
Google Scholar
Shibagaki N, Rose A, McDermott JP, Fujiwara T, Hayashi H, Yoneyama T, et al. Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots. Plant J. 2002;29:475–86.
Article
CAS
PubMed
Google Scholar
Kassis E, Cathala E, Rouached N, Fourcroy H, Berthomieu P, Terry P, et al. Characterization of a selenate-resistant Arabidopsis mutant . Root growth as a potential target for selenate toxicity. Plant Physiol. 2007;143 I 3 March 1231–1241.
Mustafiz A, Sahoo KK, Singla-Pareek SL, Sopory SK. Metabolic engineering of glyoxalase pathway for enhancing stress tolerance in plants. 2010.
Google Scholar
Zhang L, Shi X, Zhang Y, Wang J, Yang J, Ishida T, et al. CLE9 peptide-induced stomatal closure is mediated by abscisic acid, hydrogen peroxide, and nitric oxide in Arabidopsis thaliana. Plant Cell Environ. 2019;42:1033–44.
Article
CAS
PubMed
Google Scholar
Lv S, Zhang Y, Li C, Liu Z, Yang N, Pan L, et al. Strigolactone-triggered stomatal closure requires hydrogen peroxide synthesis and nitric oxide production in an abscisic acid-independent manner. New Phytol. 2018;217:290–304.
Article
CAS
PubMed
Google Scholar
Wang Y, Ying Y, Chen J, Wang X. Transgenic Arabidopsis overexpressing Mn-SOD enhanced salt-tolerance. Plant Sci. 2004;167:671–7.
Article
CAS
Google Scholar
Tal ASM. The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiol Plant. 1998;104:169–74.
Article
Google Scholar
Pilon-Smits EAH, Winkel LHE, Lin Z-Q. Selenium in plants : molecular, Physiological, Ecological and Evolutionary Aspects. 2017.
Xiao Q, Li XL, Gao GF, Chen J, Liu X, Shen ZJ, et al. Nitric oxide enhances selenium concentration by promoting selenite uptake by rice roots. J Plant Nutr Soil Sci. 2017;180:788–99.
Article
CAS
Google Scholar
Goufo P, Trindade H. Rice antioxidants: phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ -oryzanol, and phytic acid. Food Sci Nutr. 2014;2:75–104. https://doi.org/10.1002/fsn3.86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tananuwong K, Tewaruth W. Extraction and application of antioxidants from black glutinous rice. LWT - Food Sci Technol. 2010;43:476–81. https://doi.org/10.1016/j.lwt.2009.09.014.
Article
CAS
Google Scholar
Nam SH, Choi SP, Kang MY, Koh HJ, Kozukue N, Friedman M. Antioxidative activities of bran extracts from twenty one pigmented rice cultivars. Food Chem. 2006;94:613–20.
Article
CAS
Google Scholar
Zhang Y, Butelli E, Martin C. Engineering anthocyanin biosynthesis in plants. Curr Opin Plant Biol. 2014;19:81–90. https://doi.org/10.1016/j.pbi.2014.05.011.
Article
CAS
PubMed
Google Scholar
Zhang Y, Butelli E, De Stefano R, Schoonbeek HJ, Magusin A, Pagliarani C, et al. Anthocyanins double the shelf life of tomatoes by delaying overripening and reducing susceptibility to gray mold. Curr Biol. 2013;23:1094–100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kong L, Wang M, Bi D. Selenium modulates the activities of antioxidant enzymes, osmotic homeostasis and promotes the growth of sorrel seedlings under salt stress. Plant Growth Regul. 2005;45:155–63.
Article
CAS
Google Scholar
Xu Z, Fang Y, Chen Y, Yang W, Ma N, Pei F, et al. Protective effects of Se-containing protein hydrolysates from Se-enriched rice against Pb2+−induced cytotoxicity in PC12 and RAW264.7 cells. Food Chem. 2016;202:396–403.
Article
CAS
PubMed
Google Scholar
Tang H, Liu Y, Gong X, Zeng G, Zheng B, Wang D, et al. Effects of selenium and silicon on enhancing antioxidative capacity in ramie (Boehmeria nivea (L.) gaud.) under cadmium stress. Environ Sci Pollut Res. 2015;22:9999–10008.
Article
CAS
Google Scholar
Zhang M, Tang S, Huang X, Zhang F, Pang Y, Huang Q, et al. Selenium uptake, dynamic changes in selenium content and its influence on photosynthesis and chlorophyll fluorescence in rice (Oryza sativa L.). Environ Exp Bot. 2014;107:39–45. https://doi.org/10.1016/j.envexpbot.2014.05.005.
Article
CAS
Google Scholar
Luo J-S, Huang J, Zeng D-L, Peng J-S, Zhang G-B, Ma H-L, et al. A defensin-like protein drives cadmium efflux and allocation in rice. Nat Commun. 2018;9:645. https://doi.org/10.1038/s41467-018-03088-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
White PJ. Selenium accumulation by plants. Ann Bot. 2016;117:217–35.
CAS
PubMed
Google Scholar
Supriatin S, Weng L, Comans RNJ. Selenium-rich dissolved organic matter determines selenium uptake in wheat grown on low-selenium arable land soils. Plant Soil. 2016;408:73–94. https://doi.org/10.1007/s11104-016-2900-7.
Article
CAS
Google Scholar
Mostofa MG, Hossain MA, Siddiqui MN, Fujita M, Tran LSP. Phenotypical, physiological and biochemical analyses provide insight into selenium-induced phytotoxicity in rice plants. Chemosphere. 2017;178:212–23. https://doi.org/10.1016/j.chemosphere.2017.03.046.
Article
CAS
PubMed
Google Scholar
Guerrero B, Llugany M, Palacios O, Valiente M. Dual effects of different selenium species on wheat. Plant Physiol Biochem. 2014;83:300–7. https://doi.org/10.1016/j.plaphy.2014.08.009.
Article
CAS
PubMed
Google Scholar
Ma X, Zhang J, Burgess P, Rossi S, Huang B. Interactive effects of melatonin and cytokinin on alleviating drought-induced leaf senescence in creeping bentgrass (Agrostis stolonifera). Environ Exp Bot. June 2017;2018(145):1–11. https://doi.org/10.1016/j.envexpbot.2017.10.010.
Article
CAS
Google Scholar
Arnon DI. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949;24:1–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Z, Zhang Y, Zhang X, Merewitz E, Peng Y, Ma X, et al. Metabolic pathways regulated by chitosan contributing to drought resistance in White clover. J Proteome Res. 2017;16:3039–52.
Article
CAS
PubMed
Google Scholar
Lee Y, Yoon TH, Lee J, Jeon SY, Lee JH, Lee MK, et al. A Lignin Molecular Brace Controls Precision Processing of Cell Walls Critical for Surface Integrity in Arabidopsis. Cell. 2018;173:1–13. https://doi.org/10.1016/j.cell.2018.03.060.
Article
PubMed
Google Scholar
Liang Y, Farooq MU, Zeng R, Tang Z, Zhang Y, Zheng T, et al. Breeding of Selenium Rich Red Glutinous Rice , Protein Extraction and Analysis of the Distribution of Selenium in Grain. Int J Agric Biol. 2018;20:1005–11.
CAS
Google Scholar
Farooq MU, Tang Z, Zeng R, Liang Y, Zhang Y, Zheng T, et al. Accumulation, mobilization, and transformation of selenium in rice grain provided with foliar sodium selenite. J Sci Food Agric. 2019;99:2892–900.
Article
CAS
PubMed
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25:402–8.
Article
CAS
PubMed
Google Scholar
Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3:1101–8.
Article
CAS
PubMed
Google Scholar