Wyman D. Trees for American gardens. New York: Macmillan; 1955.
Google Scholar
Höfer M, Mams EA, Sellmann J, Peil A. Phenotypic evaluation and characterization of a collection of Malus species. Genet Resour Crop Evol. 2014;61:943–64.
Article
Google Scholar
Lisandru TT, Füstös A, Dumitraş A, Mitre V. Flower development of ornamental crabapple according to BBCH scale. Bulletin UASVM Hortic. 2017;74:147–8.
Google Scholar
Muzher BM, Younis RAA, El-Halabi O, Ismail OM. Genetic identification of some Syrian local apple(Malus sp.) cultivars using molecular markers. Res J Agric Biol Sci. 2007;3:704–13.
Ulukan H. The evolution of cultivated plant species: classical plant breeding versus genetic engineering. Plant Syst Evol. 2009;280:133–42.
Article
Google Scholar
Brown SK. Apple (Malus × domestica). New York: Springer; 2012.
Mratinić E, Akšić MF. Phenotypic Diversity of apple (Malus sp.) germplasm in south serbia. Braz Arch Biol Technol. 2012;55:349–58.
Article
Google Scholar
Fiala JL. Flowering crabapples: the genus Malus. Portland: Timber Press; 1994.
Endress PK. The flowers in extant basal angiosperms and inferences on ancestral flowers. Int J Plant Sci. 2001;162:1111–40.
Article
Google Scholar
Maere S, De BS, Raes J, Casneuf T, Van Montagu M, Kuiper M, et al. Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci U S A. 2005;102:5454–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Becker A, Alix K, Damerval C. The evolution of flower development: current understanding and future challenges. Ann Bot. 2011;107:1427–31.
Article
PubMed
PubMed Central
Google Scholar
Armbruster WS. Evolution of floral form: electrostatic forces, pollination, and adaptive compromise. New Phytol. 2001;152:181–3.
Article
Google Scholar
Benlloch R, Berbel A, Serranomislata A, Madueño F. Floral initiation and inflorescence architecture: a comparative view. Ann Bot. 2007;100:659–76.
Article
PubMed
PubMed Central
Google Scholar
Sargent RD, Goodwillie C, Kalisz S, Ree RH. Phylogenetic evidence for a flower size and number trade-off. Am J Bot. 2007;94:2059–62.
Article
PubMed
Google Scholar
Goodwillie C, Sargent RD, Eckert CG, Elle E, Geber MA, Johnston MO, et al. Correlated evolution of mating system and floral display traits in flowering plants and its implications for the distribution of mating system variation. New Phytol. 2010;185:311–21.
Article
PubMed
Google Scholar
Mojica JP, Kelly JK. Viability selection prior to trait expression is an essential component of natural selection. Proc Biol Sci. 2010;277:2945–50.
Article
PubMed
PubMed Central
Google Scholar
Dudash MR, Hassler C, Stevens PM, Fenster CB. Experimental floral and inflorescence trait manipulations affect pollinator preference and function in a hummingbird-pollinated plant. Am J Bot. 2011;98:275–82.
Article
PubMed
Google Scholar
Endress PK. Evolutionary diversification of the flowers in angiosperms. Am J Bot. 2011;98:370–96.
Article
PubMed
Google Scholar
Johnson K, Lenhard M. Genetic control of plant organ growth. New Phytol. 2011;191:319–33.
Article
PubMed
Google Scholar
Coen ES, Meyerowitz EM. The war of the whorls: genetic interactions controlling flower development. Nature. 1991;53:31–7.
Article
Google Scholar
Theissen G. Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol. 2001;4:75–85.
Article
CAS
PubMed
Google Scholar
Theissen G, Saedler H. Floral quartets. Nature. 2001;409:469–71.
Article
CAS
PubMed
Google Scholar
Li Y, Li Y. Morphological studies on floral organ development of the flowers with single- and Triple-whorled petals in Lisianthus (Eustoma grandiflorum). Acta Hortic Sin. 2005;32:458–62.
Google Scholar
Baum DA, Hileman LC. A developmental genetic model for the origin of the flower. In: Ainsworth C, editor. flowering and its manipulation (Annual Plant Reviews, vol. 20). Oxford: Blackwell Publishing Ltd; 2006. p. 1–27.
Google Scholar
Hernández-Hernández T, Martínez-Castilla LP, Alvarez-Buylla ER. Functional diversification of B MADS-box homeotic regulators of flower development: Adaptive evolution in protein-protein interaction domains after major gene duplication events. Mol Biol Evol. 2007;24:465–81.
Article
PubMed
CAS
Google Scholar
Kramer EM. Understanding the genetic basis of floral diversity. Bioscience. 2007;57:479–87.
Article
Google Scholar
Mondragón-Palomino M. Perspectives on MADS-box expression during orchid flower evolution and development. Front Plant Sci. 2013;4:377–85.
PubMed
PubMed Central
Google Scholar
Li L, Yu XX, Guo CC, Duan XS, Shan HY, Zhang R, et al. Interactions among proteins of floral MADS‐box genes in Nuphar pumila (Nymphaeaceae) and the most recent common ancestor of extant angiosperms help understand the underlying mechanisms of the origin of the flower. J Syst Evol. 2015;53:285–96.
Article
Google Scholar
Bemer M, Angenent GC. Floral organ initiation and development. J R Asiat Soc. 2009;100:29–36.
Google Scholar
Reznick DN, Ricklefs RE. Darwin’s bridge between microevolution and macroevolution. Nature. 2009;457:837–42.
Article
CAS
PubMed
Google Scholar
Xu B. An overview of macroevolution on the viewpoint of microevolution. Acta Botanica Yunnanica. 1991;13:101–12.
Google Scholar
Chu AX. Research on the cultivar classification of ornamental crabapples in Henan. Nanjing: Nanjing Forestry University; 2009.
Google Scholar
Liu ZQ, Tang GG. A study on cultivar classification system of Malus halliana Koehne. J Nanjing Forestry Univ. 2004;28:101–6.
Qian GZ. The taxonomic study of the genus Malus Mill. Nanjing: Nanjing Forestry University; 2005.
RHJ S. double flower. In: Basra AS, editor. Encyclopedic Dictionary of Plant Breeding and Related Subjects. New York: Food Products Press; 2003. p. 139.
Google Scholar
Nitasaka E. Insertion of an En/Spm-related transposable element into a floral homeotic gene DUPLICATED causes a double flower phenotype in the Japanese morning glory. Plant J. 2003;36:522–31.
Article
CAS
PubMed
Google Scholar
Li ZR, Peng Q, Ji ZC, Gao KY, Yi LX, Liao HM, et al. Floral vascular bundle system anatomical observation of double flower Jasminum mesnyi Hance. Hunan Agric Sci. 2016;5:5–7.
Google Scholar
Akita Y, Horikawa Y, Kanno A. Comparative analysis of floral MADS-box genes between wild-type and a putative homeotic mutant in lily. J Hortic Sci. 2008;83:453–61.
CAS
Google Scholar
Akita Y, Nakada M, Kanno A. Effect of the expression level of an AGAMOUS-like gene on the petaloidy of stamens in the double-flowered lily, ‘Elodie’. Sci Hortic. 2011;128:48–53.
Article
CAS
Google Scholar
Ao Y, Wang Y, Chen L, Wang T, Yu HY, Zhang ZX. Identification and comparative profiling of microRNAs in wild-type Xanthoceras sorbifolia, and its double flower mutant. Genes Genomics. 2012;34:561–8.
Article
CAS
Google Scholar
Heijmans K, Morel P, Vandenbussche M. MADS-box genes and floral development: the dark side. J Exp Bot. 2012;63:5397–404.
Article
CAS
PubMed
Google Scholar
Liu Z, Zhang D, Liu D, Li F, Lu H. Exon skipping of AGAMOUS homolog PrseAG in developing double flowers of Prunus lannesiana (Rosaceae). Plant Cell Rep. 2013;32:227–37.
Article
PubMed
CAS
Google Scholar
Noor SH, Ushijima K, Murata A, Yoshida K, Tanabe M, Tanigawa T, et al. Double flower formation induced by silencing of C-class MADS-box genes and its variation among petunia Cultivars. Sci Hortic. 2014;178:1–7.
Article
CAS
Google Scholar
Sharifi A, Oizumi K, Kubota S, Bagheri A, Shafaroudi SM, Nakano M, et al. Double flower formation in Tricyrtis macranthopsis, is related to low expression of AGAMOUS, ortholog gene. Sci Hortic. 2015;193:337–45.
Article
CAS
Google Scholar
Zhang H, Ren S. Flora reipublic popularis sinicae. Beijing: Science Press; 1998.
Google Scholar
Cheng J. The genetics and breeding of garden plants. Beijing: China Forestry Press; 2001.
Google Scholar
Zhu G. The potential role of B-function gene involved in floral development for double flowers formation in Camellia changii Ye. Afr J Biotechnol. 2011;10:541–8.
Google Scholar
Galimba KD, Tolkin TR, Sullivan AM, Melzer R, Theißen G, Di Stilio VS. Loss of deeply conserved C-class floral homeotic gene function and C- and E-class protein interaction in a double-flowered ranunculid mutant. Proc Natl Acad Sci U S A. 2012;109:2267–75.
Article
Google Scholar
Bouvet JM, Makouanzi G, Cros D, Vigneron PH. Modeling additive and non-additive effects in a hybrid population using genome-wide genotyping: prediction accuracy implications. Heredity. 2016;116:146–57.
Article
CAS
PubMed
Google Scholar
Bolormaa S, Pryce JE, Zhang Y, Reverter A, Barendse W, Hayes BJ, et al. Non-additive genetic variation in growth, carcass and fertility traits of beef cattle. Genet Sel. Evol. 2015;47:26.
Article
PubMed
PubMed Central
Google Scholar
Fu D, Xiao M, Hayward A, Jiang GJ, Zhu LR, Zhou QH, et al. What is crop heterosis: new insights into an old topic. J Appl Genet. 2015;56:1–13.
Article
CAS
PubMed
Google Scholar
Hufford KM, Mazer SJ. Plant ecotypes: genetic differentiation in the age of ecological restoration. Trends Ecol Evol. 2003;18:147–55.
Article
Google Scholar
Cheng J, Liu Q. Garden plant genetics and breeding. Beijing: China Forestry Press; 2010.
Google Scholar
Gul R, Khalil IH, Shah SMA, Ghafoor A. Heterosis for flower and fruit traits in tomato (Lycopersicon esculentum Mill.). Afr J Biotechnol. 2010;9:4144–51.
Nnungu SI, Uguru MI. Expression of heterosis in floral traits and fruit size in tomato (Solanum lycopersicum) hybrids. J Trop Agric, Food, Environ Ext. 2014;13:24–9.
Google Scholar
Ryder P, Mckeown PC, Fort A, Spillane C. Epigenetics and heterosis in crop plants. In: Alvarez-Venegas R, Peña CDL, Casas-Mollano JA, editors. Epigenetics in plants of agronomic importance: fundamentals and applications. Switzerland: Springer International Publishing; 2014. p. 13–31.
Google Scholar
Li SC, Li SB, Jiang YL, Yang CM, Wu LF. Genetic performance of primary ornamental traits in F1 hybrids of Gerbera jamesonii bolus intervarietal hybridization varietal hybridization. J Yunnan Agric Univ. 2007;22:197–201.